On the Instability of the Feedback Equilibrium Payoff in a Nonzero-Sum Differential Game on the Line

  • Pierre Cardaliaguet
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 9)


For a simple nonzero-sum differential game on the real line, the natural notion of Nash equilibrium payoff in feedback form turns out to be extremely unstable. Two examples of different types of instability are discussed.


Nash Equilibrium Differential Game Equilibrium Payoff Terminal Time Memory Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aubin J.-P. (1992) Viability Theory. Birkhaßser, Boston.Google Scholar
  2. [2]
    Bressan A.& Shen W. (2004) Small BVsolutions of hyperbolic noncooperative differential games, SIAM J. Control Optim. 43, no. 1, 194–215.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Bressan A. & Shen W. (2004) Semi-cooperative Strategies for Differential Games, Internat. J. Game Theory 32,4, 561–593.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cardaliaguet P. & Plaskacz S. (2003) Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game, International J. Game Theory 32, pp. 33–71.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Evans L.C. & Souganidis P.E. (1984) Differential games and representation formulas for solutions of Hamilton-Jacobi Equations, Indiana Univ. Math. J., 33, 773–797.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Kleimenov A.F. (1993) Nonantagonist differential games (in Russian) “Nauka” Uralprime skoe Otdelenie, Ekaterinburg.Google Scholar
  7. [7]
    Kononenko, A.F. (1976) On equilibrium positional strategies in nonantagonistic differential games. Dokl. Akad. Nauk SSSR 231, 285–288.MathSciNetGoogle Scholar
  8. [8]
    Mannucci P. (2004/2005) Nonzero-sum stochastic differential games with discontinuous feedback, SIAM J. Control Optim. 434, 1222–1233 (electronic).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Tolwinski B., Haurie A. & Leitmann G. (1986) Cooperative equilibria in differential games. J. Math. Anal. Appl. 119, 182–202.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Pierre Cardaliaguet
    • 1
  1. 1.Laboratoire de Mathématiques Unite’ CNRS UMR6205Université de Bretagne OccidentaleBrest cedexFrance

Personalised recommendations