Incentive Stackelberg Strategies for a Dynamic Game on Terrorism

  • Doris A. Behrens
  • Jonathan P. Caulkins
  • Gustav Feichtinger
  • Gernot Tragler
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 9)


This paper presents a dynamic game model of international terrorism. The time horizon is finite, about the size of one presidency, or infinite. Quantitative and qualitative analyses of incentive Stackelberg strategies for both decisionmakers of the game (“theWest” and “International Terror Organization”) allow statements about the possibilities and limitations of terror control interventions. Recurrent behavior is excluded with monotonic variation in the frequency of terror attacks whose direction depends on when the terror organization launches its terror war. Even optimal pacing of terror control operations does not greatly alter the equilibrium of the infinite horizon game, but outcomes from theWest’s perspective can be greatly improved if the game is only “played” for brief periods of time and if certain parameters can be influenced, notably those pertaining to the terror organization’s ability to recruit replacements.


Time Horizon Terrorist Attack Shadow Price Dynamic Game Stackelberg Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Başar, T., Olsder, G.J. (1999) Dynamic Noncooperative Game Theory. SIAM Series in Classics in Applied Mathematics, Philadelphia, PA.Google Scholar
  2. [2]
    Behrens, D.A., Hager, M., Neck, R. (2003) OPTGAME 1.0: A numerical algorithm to determine solutions for two-person difference games. In: R. Neck (ed.), Modelling and Control of Economic Systems 2002, Elsevier, Oxford, 47–58.Google Scholar
  3. [3]
    Bergman, P.L. (2001) Holy War Inc.: Inside the Secret World of Osama bin Laden. Free Press, New York.Google Scholar
  4. [4]
    Caulkins, J.P., Grass, D., Feichtinger, G., Tragler, G. (2005) Optimizing Counter-Terror Operations: Should One Fight Fire with “Fire” or “Water”? Computers and Operations Research, to appear.Google Scholar
  5. [5]
    Dockner, E., Jorgensen, S. Long, N.V., Sorger, G. (2000) Differential Games in Economics and Management Science. Cambridge University Press, Cambridge.MATHGoogle Scholar
  6. [6]
    Ehtamo, H., Hämäläinen, R.P. (1986) On Affine Incentives for Dynamic Decision Problems. In: Başar, T. (ed.), Dynamic Games and Applications in Economics. Springer, Berlin, 46–63.Google Scholar
  7. [7]
    Ehtamo, H., Hämäläinen, R.P. (1989) Incentive Strategies and Equilibria for Dynamic Games with Delayed Information. Journal of Optimization Theory and Applications 63, 355–370.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Ehtamo, H., Hämäläinen, R.P. (1993) A Cooperative Incentive Equilibrium for a Resource Management Problem. Journal of Economic Dynamics and Control 17, 659–678.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Feichtinger, G., Hartl, R.F. (1986) Optimale Kontrolle Ökonomischer Prozesse-Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften. DeGruyter, Berlin.MATHGoogle Scholar
  10. [10]
    Frey B.S. Luechinger S. 2003 How to Fight Terrorism Alternatives to Deterrence. Defence and Peace Ecomics 144 237–249Google Scholar
  11. [11]
    Friedman, T.L. (2002) Longitudes and Attitudes: Exploring the World after September 11. Farrar, Straus, and Giroux, New York.Google Scholar
  12. [12]
    Glain, S.(2004) Mullahs, Merchants, and Militants. St. Martin’s Press, New York.Google Scholar
  13. [13]
    Gold, M.R., Siegel, J.E., Russell, L.B., Weinstein, M.C. (1996) Cost-Effectiveness in Health and Medicine. Oxford University Press, London.Google Scholar
  14. [14]
    Heymann, P.B. (2003) Dealing with Terrorism after September 11, 2001: An Overview. In: Howitt, A., Pangi, R. (eds.) Preparing for Domestic Terrorism. MIT Press, Cambridge, MA, 57Google Scholar
  15. [15]
    Kaplan, E.H., Mintz, A., Mishal, S., Samban, C. (2005) What Happened to Suicide Bombings in Israel? Insights from a Terror Stock Model. Studies in Conflict & Terrorism 28, 225–235.CrossRefGoogle Scholar
  16. [16]
    Keohane, N.O, Zeckhauser, R. (2003) The Ecology of Terror Defense. Journal of Risk and Uncertainty 26, 201–229.MATHCrossRefGoogle Scholar
  17. [17]
    Léonard, D. (1981) The Signs of the Costate Variables and Sufficiency Conditions in a Class of Optimal Control Problems. Economic Letters 8, 321–325.CrossRefGoogle Scholar
  18. [18]
    Leonard, D., Long, N.V. (1992) Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, Cambridge.Google Scholar
  19. [19]
    McKibbin, W., Sachs, J.D. (1991) Global Linkages. Macroeconomic Interdependences and Cooperation in the World Economy. The Brookings Institutionpl, Washington, DC.Google Scholar
  20. [20]
    Pakes, A., Gowrisankaran, G., McGuire, P. (1993) Implementing the Pakes-McGuire Algorithm for Computing Markov-Perfect Equilibria in GAUSS. Working paper of the Department of Economics at the Yale University.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Doris A. Behrens
    • 1
    • 2
  • Jonathan P. Caulkins
    • 3
    • 4
  • Gustav Feichtinger
    • 1
  • Gernot Tragler
    • 1
  1. 1.Institute for Mathematical Methods in Economics, ORDYSVienna University of TechnologyViennaAustria
  2. 2.Department of EconomicsAlps Adriatic University of KlagenfurtKlagenfurtAustria
  3. 3.H. John Heinz III School of Public Policy and ManagementCarnegie Mellon UniversityPittsburghUSA
  4. 4.Qatar CampusDohaQatar

Personalised recommendations