Reconstruction of Binary Matrices under Adjacency Constraints

  • S. Brunetti
  • M.C. Costa
  • A. Frosini
  • F. Jarray
  • C. Picouleau
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We are concerned with binary matrix reconstruction from their orthogonal projections. To the basic problem we add new kinds of constraints. In the first problems we study the ones of the matrix must be isolated: All the neighbors of a one must be a zero. Several types of neighborhoods are studied. In our second problem, every one has to be horizontally not isolated. Moreover, the number of successive zeros in a horizontal rank must be bounded by a fixed parameter. Complexity results and polynomial-time algorithms are given.


Polynomial Time Orthogonal Projection Packing Problem Binary Matrix Vertical Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., and Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs, NJ (1993).Google Scholar
  2. 2.
    Alfares, H.K.: Four day workweek scheduling with two or three consecutive days off. J. Math. Modeling Algorithms, 2, 67–80 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alfares, H.K.: Survey, categorization, and comparison of recent tour scheduling literature. Annals of Operations Research, 127, 147–177 (2004).CrossRefMathSciNetGoogle Scholar
  4. 4.
    Barcucci, E., Del Lungo, A, Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theor. Comp. Sci., 155, 321–347 (1996).zbMATHCrossRefGoogle Scholar
  5. 5.
    Baxter, R.J.: Planar lattice gases with nearest-neighbour exclusion. Annals of Combinatorics, 3, 191–203 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comp. Sci., 304, 35–57 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Maurice, N.: Reconstruction of 4-and 8-connected convex discrete sets from row and column projections. Lin. Algebra Appl., 339, 37–57 (2001).zbMATHCrossRefGoogle Scholar
  8. 8.
    Burns, R.N., Narasimhan, R., Smith, L.D.: A set processing algorithm for scheduling staff on 4-day or 3-day work weeks. Naval Research Logistics, 45, 839–853 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Calkin, N.J., Wilf, H.S.: The number of independent sets in a grid graph. SIAM J. Discr. Math., 11, 54–60 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chan, M.T., Herman, G.T., Levitan, E.: Bayesian image reconstruction using image-modeling Gibbs priors. Int. J. Imaging Systems Techn., 9, 85–98 (1998).CrossRefGoogle Scholar
  11. 11.
    Chrobak, M., Couperus, P., Dürr, C., Woeginger, G.: A note on tiling under tomographic constraints. Theor. Comp. Sci., 290, 2125–2136 (2003).zbMATHCrossRefGoogle Scholar
  12. 12.
    Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett., 69, 283–289 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from X-rays: NP-completeness proof for three atoms. Theor. Comp. Sci., 259, 81–98 (2001).zbMATHCrossRefGoogle Scholar
  14. 14.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. 2nd edition, MIT Press, Cambridge, MA (2001).Google Scholar
  15. 15.
    Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Reconstruction under periodicity constraints. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.), Automata, Languages and Programming, Springer, Berlin, Germany, pp. 38–56 (2002).CrossRefGoogle Scholar
  16. 16.
    Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections. In Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications, Birkhäuser, Boston, MA, pp. 163–188 (1999).Google Scholar
  17. 17.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA (1999).zbMATHGoogle Scholar
  18. 18.
    Hung, R.: Single-shift off-day scheduling of a hierarchical workforce with variable demands. European J. Operational Research, 78, 49–57 (1994).zbMATHCrossRefGoogle Scholar
  19. 19.
    Jarray F.: Résolution de problèmes de tomographie discrète. Applications à la planification de personnel. Ph.D. Thesis, CNAM, Paris, France (2004).Google Scholar
  20. 20.
    Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theor. Comput. Sci., 283, 223–242 (2000).CrossRefMathSciNetGoogle Scholar
  21. 21.
    Picouleau, C.: Reconstruction of domino tiling from its two orthogonal projections. Theor. Comp. Sci., 255, 437–447 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 9, 371–377 (1957).zbMATHMathSciNetGoogle Scholar
  23. 23.
    Ryser, H.: Combinatorial Mathematics, Mathematical Association of America, Washington, DC (1963).zbMATHGoogle Scholar
  24. 24.
    Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Info. Process. Lett., 77, 225–229 (2001).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • S. Brunetti
    • 1
  • M.C. Costa
    • 2
  • A. Frosini
    • 3
  • F. Jarray
    • 4
  • C. Picouleau
    • 5
  1. 1.Dipartimento di Scienze Matematiche e InformaticheUniversità di SienaSienaItaly
  2. 2.Conservatoire National des Arts et Métiers, Laboratoire CEDRICParisFrance
  3. 3.Dip. di Scienze Matematiche e InformaticheUniv. degli Studi di SienaSienaItaly
  4. 4.Conservatoire National des Arts et Métiers, Laboratoire CEDRICParisFrance
  5. 5.Conservatoire National des Arts et Métiers, Laboratoire CEDRICParisFrance

Personalised recommendations