Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter we present an algebraic theory of patterns that can be applied in discrete tomography for any dimension. We use that the difference of two such patterns yields a configuration with vanishing line sums. We show by introducing generating polynomials and applying elementary properties of polynomials that such so-called switching configurations form a linear space. We give a basis of this linear space in terms of the so-called switching atom, the smallest nontrivial switching configuration. We do so both in case that the material does not absorb light and absorbs light homogeneously. In the former case we also show that a configuration can be constructed with the same line sums as the original and with entries of about the same size, and we provide a formula for the number of linear dependencies between the line sums. In the final section we deal with the case that the transmitted light does not follow straight lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: X-rays characterizing some classes of discrete sets. Lin. Algebra Appl., 339, 3–21 (2001).

    Article  MATH  Google Scholar 

  2. Barcucci, E., Frosini, A., Rinaldi, S.: Reconstruction of discrete sets from two absorbed projections: An algorithm. Electr. Notes Discr. Math., 12 (2003).

    Google Scholar 

  3. Batenburg, K.J.: Reconstruction of binary images from discrete X-rays. CWI, Technical Report PNA-E0418, ftp.cwi.nl/CWIreports/PNA/PNA-E0418.pdf (2004).

    Google Scholar 

  4. Batenburg, K.J.: A new algorithm for 3D binary tomography. Electr. Notes Discr. Math., 20, 247–261 (2005).

    Article  MathSciNet  Google Scholar 

  5. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin, Germany (1993).

    MATH  Google Scholar 

  6. Del Lungo, A., Gronchi, P., Herman, G.T. (eds.): Proceedings of the Workshop on Discrete Tomography: Algorithms and Applications. Lin. Algebra Appl., 339, 1–219 (2001).

    Google Scholar 

  7. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge, UK (1995).

    MATH  Google Scholar 

  8. Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets by X-rays. Trans. Amer. Math. Soc., 349, 2271–2295 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. Gardner, R.J., Gritzmann, P.: Uniqueness and complexity in discrete tomography. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA, pp. 85–113 (1999).

    Google Scholar 

  10. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discr. Math., 202, 45–71 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  11. Hajdu, L.: Unique reconstruction of bounded sets in discrete tomography. Electr. Notes Discr. Math., 20, 15–25 (2005).

    Article  MathSciNet  Google Scholar 

  12. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math., 534, 119–128 (2001).

    MATH  MathSciNet  Google Scholar 

  13. Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. Lin. Algebra Appl., 339, 147–169 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. Hajdu, L., Tijdeman, R.: Algebraic aspects of emission tomography with absorption. Theoret. Comput. Sci., 290, 2169–2181 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA (1999).

    MATH  Google Scholar 

  16. Herman, G.T., Kuba, A. (eds.): Proceedings of the Workshop on Discrete Tomography and Its Applications. Electr. Notes Discr. Math., 20, 1–622 (2005).

    Google Scholar 

  17. Kong, T.Y., Herman, G.T.: On which grids can tomographic equivalence of binary pictures be characterized in terms of elementary switching operations? Int. J. Imaging Syst. Technol., 9, 118–125 (1998).

    Article  Google Scholar 

  18. Kong, T.Y., Herman, G.T.: Tomographic equivalence and switching operations. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA, pp. 59–84 (1999).

    Google Scholar 

  19. Kuba, A., Herman, G.T.: Discrete tomography: A historical overview. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhauser, Boston, MA, pp. 3–34 (1999).

    Google Scholar 

  20. Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. In: Borge-fors, G., Nystrm, I., Sanniti di Baja, G. (eds.), Discrete Geometry in Computer Imagery, Springer, Berlin, Germany, pp. 137–148 (2000).

    Google Scholar 

  21. Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. Lin. Algebra Appl., 339, 171–194 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. Lang, S.: Algebra. Addison-Wesley, Reading, MA (1984).

    MATH  Google Scholar 

  23. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 9, 371–377 (1957).

    MATH  MathSciNet  Google Scholar 

  24. Schinzel, A.: Polynomials with Special Regard to Reducibility. Cambridge University Press, Cambridge, UK (2000).

    MATH  Google Scholar 

  25. Shliferstein, H.J., Chien, Y.T.: Switching components and the ambiguity problem in the reconstruction of pictures from their projections. Pattern Recognition, 10, 327–340 (1978).

    Article  MATH  Google Scholar 

  26. Zopf, S., Kuba, A.: Reconstruction of measurable sets from two generalized projections. Electr. Notes Discr. Math., 20, 47–66 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Hajdu, L., Tijdeman, R. (2007). Algebraic Discrete Tomography. In: Herman, G.T., Kuba, A. (eds) Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4543-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4543-4_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3614-2

  • Online ISBN: 978-0-8176-4543-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics