Advertisement

Abstract

In this chapter we present an algebraic theory of patterns that can be applied in discrete tomography for any dimension. We use that the difference of two such patterns yields a configuration with vanishing line sums. We show by introducing generating polynomials and applying elementary properties of polynomials that such so-called switching configurations form a linear space. We give a basis of this linear space in terms of the so-called switching atom, the smallest nontrivial switching configuration. We do so both in case that the material does not absorb light and absorbs light homogeneously. In the former case we also show that a configuration can be constructed with the same line sums as the original and with entries of about the same size, and we provide a formula for the number of linear dependencies between the line sums. In the final section we deal with the case that the transmitted light does not follow straight lines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: X-rays characterizing some classes of discrete sets. Lin. Algebra Appl., 339, 3–21 (2001).zbMATHCrossRefGoogle Scholar
  2. 2.
    Barcucci, E., Frosini, A., Rinaldi, S.: Reconstruction of discrete sets from two absorbed projections: An algorithm. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  3. 3.
    Batenburg, K.J.: Reconstruction of binary images from discrete X-rays. CWI, Technical Report PNA-E0418, ftp.cwi.nl/CWIreports/PNA/PNA-E0418.pdf (2004).Google Scholar
  4. 4.
    Batenburg, K.J.: A new algorithm for 3D binary tomography. Electr. Notes Discr. Math., 20, 247–261 (2005).CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin, Germany (1993).zbMATHGoogle Scholar
  6. 6.
    Del Lungo, A., Gronchi, P., Herman, G.T. (eds.): Proceedings of the Workshop on Discrete Tomography: Algorithms and Applications. Lin. Algebra Appl., 339, 1–219 (2001).Google Scholar
  7. 7.
    Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge, UK (1995).zbMATHGoogle Scholar
  8. 8.
    Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets by X-rays. Trans. Amer. Math. Soc., 349, 2271–2295 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gardner, R.J., Gritzmann, P.: Uniqueness and complexity in discrete tomography. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA, pp. 85–113 (1999).Google Scholar
  10. 10.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discr. Math., 202, 45–71 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hajdu, L.: Unique reconstruction of bounded sets in discrete tomography. Electr. Notes Discr. Math., 20, 15–25 (2005).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math., 534, 119–128 (2001).zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. Lin. Algebra Appl., 339, 147–169 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of emission tomography with absorption. Theoret. Comput. Sci., 290, 2169–2181 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA (1999).zbMATHGoogle Scholar
  16. 16.
    Herman, G.T., Kuba, A. (eds.): Proceedings of the Workshop on Discrete Tomography and Its Applications. Electr. Notes Discr. Math., 20, 1–622 (2005).Google Scholar
  17. 17.
    Kong, T.Y., Herman, G.T.: On which grids can tomographic equivalence of binary pictures be characterized in terms of elementary switching operations? Int. J. Imaging Syst. Technol., 9, 118–125 (1998).CrossRefGoogle Scholar
  18. 18.
    Kong, T.Y., Herman, G.T.: Tomographic equivalence and switching operations. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA, pp. 59–84 (1999).Google Scholar
  19. 19.
    Kuba, A., Herman, G.T.: Discrete tomography: A historical overview. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhauser, Boston, MA, pp. 3–34 (1999).Google Scholar
  20. 20.
    Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. In: Borge-fors, G., Nystrm, I., Sanniti di Baja, G. (eds.), Discrete Geometry in Computer Imagery, Springer, Berlin, Germany, pp. 137–148 (2000).Google Scholar
  21. 21.
    Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. Lin. Algebra Appl., 339, 171–194 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lang, S.: Algebra. Addison-Wesley, Reading, MA (1984).zbMATHGoogle Scholar
  23. 23.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 9, 371–377 (1957).zbMATHMathSciNetGoogle Scholar
  24. 24.
    Schinzel, A.: Polynomials with Special Regard to Reducibility. Cambridge University Press, Cambridge, UK (2000).zbMATHGoogle Scholar
  25. 25.
    Shliferstein, H.J., Chien, Y.T.: Switching components and the ambiguity problem in the reconstruction of pictures from their projections. Pattern Recognition, 10, 327–340 (1978).zbMATHCrossRefGoogle Scholar
  26. 26.
    Zopf, S., Kuba, A.: Reconstruction of measurable sets from two generalized projections. Electr. Notes Discr. Math., 20, 47–66 (2005).CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • L. Hajdu
    • 1
  • R. Tijdeman
    • 2
  1. 1.Institute of Mathematics, University of DebrecenDebrecenHungary
  2. 2.Mathematical Institute, Leiden UniversityRA LeidenThe Netherlands

Personalised recommendations