Advertisement

An Introduction to Discrete Point X-Rays

  • P. Dulio
  • R.J. Gardner
  • C. Peri
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

A discrete point X-ray of a finite subset F of Rn at a point p gives the number of points in F lying on each line passing through p. We survey the known results on discrete point X-rays, which mostly concern uniqueness issues for subsets of the integer lattice.

Keywords

Convex Body Lattice Line Discrete Point Discrete Parallel Projective Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, A., Coury, J.E.: The Theory of Numbers. Jones and Bartlett, Boston, MA (1995).zbMATHGoogle Scholar
  2. 2.
    Alpers, A., Gritzmann, G.: On stability, error correction and noise compensation in discrete tomography. SIAM J. Discrete Math., 20, 227–239 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger, M.: Geometry. Springer, Berlin, Germany (1987).Google Scholar
  4. 4.
    Brunetti, S., Daurat, A.: An algorithm reconstructing lattice convex sets. Theoret. Comput. Sci., 304, 35–57 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dulio, P.: Geometric tomography in a graph. Rend. Circ. Mat. Palermo (2) Suppl. No. 77, to appear.Google Scholar
  6. 6.
    Dulio, P., Gardner, R.J., Peri, C.: Discrete point X-rays of convex lattice sets. Electronic Notes in Discrete Math., 20, 1–13 (2005).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dulio, P., Gardner, R.J., Peri, C.: Discrete point X-rays. SIAM J. Discrete Math., 20, 171–188 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gardner, R.J.: Geometric Tomography. Second edition, Cambridge University Press, New York, NY (2006).zbMATHGoogle Scholar
  9. 9.
    Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets by X-rays. Trans. Amer. Math. Soc., 349, 2271–2295 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gardner, R.J., Gritzmann, P.: Uniqueness and complexity in discrete tomography. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications. Birkhauser, Boston, MA, pp. 85–113 (1999).Google Scholar
  11. 11.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA (1999).zbMATHGoogle Scholar
  12. 12.
    Vol<ci<c, A.: A three-point solution to Hammer’s X-ray problem. J. London Math. Soc. (2), 34, 349–359 (1986).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • P. Dulio
    • 1
  • R.J. Gardner
    • 2
  • C. Peri
    • 3
  1. 1.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanoItaly
  2. 2.Department of MathematicsWestern Washington UniversityBellinghamUSA
  3. 3.Università Cattolica S.C.MilanoItaly

Personalised recommendations