Skip to main content

Application of a Discrete Tomography Approach to Computerized Tomography

  • Chapter
Advances in Discrete Tomography and Its Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 895 Accesses

Abstract

Linear programming is used in discrete tomography to solve the relaxed problem of reconstructing a function f with values in the interval [0,1]. The linear program minimizes the uniform norm Ax - 6∞ or the 1-norm ∞∞Ax - b∞∞1 of the error on the projections. We can add to this objective function a linear penalty function p(x) for trying to obtain smooth solutions. The same approach can be used in computerized tomography. The question is if it can provide better images than the classical methods of computerized tomography. The aim of this chapter is to provide a tentative answer. We present a preliminary study on real acquisitions from a phantom and provide reconstructions from a few projections, with qualities similar to the traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, R., Herman, G.T., Kuba, A.: Binary vectors partially determined by linear equation systems. Discr. Math., 171, 1–16 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  2. Censor, Y., Matej, S.: Binary steering of nonbinary iterative algorithms. In: Herman, G.T., Kuba, A. (ed.), Discrete Tomography, Foundations, Algorithms, and Applications. Birkhaüser, Boston, MA, pp. 285–296 (1999).

    Google Scholar 

  3. Feschet, F., Gerard, Y.: Computerized tomography with digital lines and linear programming. In: Andres, E., Damiand, G., Lienhardt, P. (eds.), Discrete Geometry in Computed Imagery, pp. 126–135 (2005).

    Google Scholar 

  4. Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete Radon transform and its approximate inversion via linear programming. Discr. Appl. Math., 75, 39–61 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. Gerard, Y., Feschet, F.: Application of a discrete tomography algorithm to computerized tomography. Electr. Notes Discr. Math., 20, 501–517 (2005).

    Article  MathSciNet  Google Scholar 

  6. Gordon, R.: A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci., 21, 31–43 (1974).

    Google Scholar 

  7. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol., 29, 471–481 (1970).

    Article  Google Scholar 

  8. Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from discrete X-rays. SI AM J. Optimization, 11, 522–546 (2000).

    Article  MATH  Google Scholar 

  9. Herman, G.T.: Image Reconstruction from Projections. Academic Press, New York, NY (1980).

    MATH  Google Scholar 

  10. Herman, G.T.: Reconstruction of binary patterns from a few projections. In: Gunther, A., Levrat, B., and Lipps, H. (eds.), International Computing Symposium, North-Holland, Amsterdam, The Netherlands, pp. 371–378 (1974).

    Google Scholar 

  11. Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med., 6, 273–274 (1976).

    Article  Google Scholar 

  12. Herman, G.T., Lent, A.: A computer implementation of a Bayesian analysis of image reconstruction. Information and Control, 31, 364–384 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  13. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imag., 12, 600–609 (1993).

    Article  Google Scholar 

  14. Kaufman, L.: Maximum likelihood, least squares and penalized least squares for PET. IEEE Trans. Med. Imag., 12, 200–214 (1993).

    Article  Google Scholar 

  15. Kaufman, L., Neumaier, A.: PET regularization by envelope guided conjugate gradients. IEEE Trans. Med. Imag., 15, 385–389 (1996).

    Article  Google Scholar 

  16. Matej, S., Vardi, A., Herman, G.T., Vardi, E: Binary tomography using Gibbs priors. In: Herman, G.T., Kuba, A. (ed.), Discrete Tomography, Foundations, Algorithms, and Applications. Birkhauser, Boston, MA, pp. 191–211 (1999).

    Google Scholar 

  17. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69, 262–277 (1917).

    Google Scholar 

  18. Reveilles, J.P.: Geometrie discrete, calcul en nombres entiers et algorithmique. M.A. thesis, ULP University, Strasbourg, France (1991).

    MATH  Google Scholar 

  19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York, NY (1986).

    MATH  Google Scholar 

  20. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag., 1, 113–122 (1982).

    Article  Google Scholar 

  21. Vardi, Y., Zhang, C.H.: Reconstruction of binary images via the EM algorithm. In: Herman, G.T., Kuba, A. (ed.), Discrete Tomography, Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA, pp. 297–316 (1999).

    Google Scholar 

  22. Weber, S., Schnorr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electr. Notes Discr. Math., 12 (2003).

    Google Scholar 

  23. Weber, S., Schiile, T, Hornegger, J., Schnorr, C.: Binary tomography by iterating linear programs from noisy projections. In: Klette, R, Zunic, J.D. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 38–51 (2004).

    Google Scholar 

  24. Wunderling, R., Paralleler und Objektorientierter Simplex-Algorithmus, Ph.D. thesis, ZIB TR 96-09, Berlin, Germany (1996).

    MATH  Google Scholar 

  25. Ye, Y: Interior Points Algorithms: Theory and Analysis. John Wiley and Sons, New York, NY (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Gerard, Y., Feschet, F. (2007). Application of a Discrete Tomography Approach to Computerized Tomography. In: Herman, G.T., Kuba, A. (eds) Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4543-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4543-4_16

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3614-2

  • Online ISBN: 978-0-8176-4543-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics