Skip to main content

Discrete Tomography Methods for Nondestructive Testing

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The industrial nondestructive testing (NDT) of objects seems to be an ideal application of discrete tomography. In many cases, the objects consist of known materials, and a lot of a priori information is available (e.g., the description of an ideal object, which is similar to the actual one under investigation). One of the frequently used methods in NDT is to take projection images of the objects by some transmitting ray (e.g., X- or neutron-ray) and reconstruct the cross sections. But it can happen that only a few number of projections can be collected, because of long and/or expensive data acquisition, or the projections can be collected only from a limited range of directions. The chapter describes two DT reconstruction methods used in NDT experiments, shows the results of a DT procedure applied in the reconstruction of oblong objects having projections only from a limited range of angles, and, finally, suggests a few further possible NDT applications of DT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaskö, M., Kuba, A., Nagy, A., Kiss, Z., Rodek, L., Ruskö, L.: Neutron-,gamma-and X-ray three-dimensional computer tomography at the Budapest research reactor, Nucl. Inst. & Meth., A, 542, 22–27 (2005).

    Article  Google Scholar 

  2. Calzada, E., Schillinger, B., Grünauer, F.: Construction and assembly of the neutron radiography and tomography facility ANTARES at FRM-II. Nucl. Inst. & Meth., A, 542, 38–44 (2005).

    Article  Google Scholar 

  3. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. PAMI, 6, 721–741 (1984).

    MATH  Google Scholar 

  4. Herman, G. T., Kuba, A. (nteds.): Discrete Tomography: Ffoundations, Algorithms, and Applications. Birkhauser, Boston, MA (1999).

    Google Scholar 

  5. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York, NY (1987).

    Google Scholar 

  6. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing. Science, 220, 671–680 (1983).

    Article  MathSciNet  Google Scholar 

  7. Kiss, Z., Rodek, L. Kuba, A.: Image reconstruction and correction methods in neutron and X-ray tomography. Acta Cybernetica, 17, 557–587 (2006).

    MATH  MathSciNet  Google Scholar 

  8. Krimmel, S., Baumann, J., Kiss, Z., Kuba, A., Nagy, A., Stephan, J.: Discrete tomography for reconstruction from limited view angles in non-destructive testing. Electr. Notes Discr. Math., 20, 455–474 (2005).

    Article  MathSciNet  Google Scholar 

  9. Krimmel, S., Stephan, J., Baumann, J.: 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data. Nucl. Inst. & Meth, A, 542, 399–407 (2005).

    Article  Google Scholar 

  10. Kuba, A., Rodek, L., Kiss, Z., Rusko, L., Nagy, A., Balasko, M.: Discrete tomography in neutron radiography. Nucl. Inst. & Meth., A, 542, 376–382 (2005).

    Article  Google Scholar 

  11. Kuba, A., Rusko, L., Rodek, L., Kiss, Z.: Preliminary studies of discrete tomography in neutron imaging, IEEE Trans. Nucl. Sci., 52, 380–385 (2005).

    Article  Google Scholar 

  12. Robert, N., Peyrin, F., Yaffe, M. J.: Binary vascular reconstruction from a limited number of cone beam projections. Med. Phys., 21, 1839–1851 (1994).

    Article  Google Scholar 

  13. Schillinger, B., Abele, H., Brunner, J., Frei, G., Gähler, R., Gildemeister, A., Hillenbach, A., Lehmann, E., Vontobel, P.: Detection systems for short-time stroboscopic neutron imaging and measurements on a rotating engine. Nucl. Inst. & Meth., A, 542, 142–147 (2005).

    Article  Google Scholar 

  14. Schillinger, B.: Proposed combination of CAD data and discrete tomography for the detection of coking and lubricants in turbine blades or engines. Electr. Notes Discr. Math., 20, 493–499 (2005).

    Article  MathSciNet  Google Scholar 

  15. Zscherpel U., Osterloh, K., Ewert, U.: Unschärfeprobleme beim Einsatz digitaler Detektoren in der Durchstrahlungsprüfung. DGZfP Annual Meeting (2003). With associated web site http://www.ndt.net/article/dgzfp03/papers/v22/v22.htm.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Baumann, J. et al. (2007). Discrete Tomography Methods for Nondestructive Testing. In: Herman, G.T., Kuba, A. (eds) Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4543-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4543-4_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3614-2

  • Online ISBN: 978-0-8176-4543-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics