Advertisement

Discrete Tomography Methods for Nondestructive Testing

  • J. Baumann
  • Z. Kiss
  • S. Krimmel
  • A. Kuba
  • A. Nagy
  • L. Rodek
  • B. Schillinger
  • J. Stephan
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

The industrial nondestructive testing (NDT) of objects seems to be an ideal application of discrete tomography. In many cases, the objects consist of known materials, and a lot of a priori information is available (e.g., the description of an ideal object, which is similar to the actual one under investigation). One of the frequently used methods in NDT is to take projection images of the objects by some transmitting ray (e.g., X- or neutron-ray) and reconstruct the cross sections. But it can happen that only a few number of projections can be collected, because of long and/or expensive data acquisition, or the projections can be collected only from a limited range of directions. The chapter describes two DT reconstruction methods used in NDT experiments, shows the results of a DT procedure applied in the reconstruction of oblong objects having projections only from a limited range of angles, and, finally, suggests a few further possible NDT applications of DT.

Keywords

Turbine Blade Line Detector Detector Pixel Neutron Radiography Discrete Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaskö, M., Kuba, A., Nagy, A., Kiss, Z., Rodek, L., Ruskö, L.: Neutron-,gamma-and X-ray three-dimensional computer tomography at the Budapest research reactor, Nucl. Inst. & Meth., A, 542, 22–27 (2005).CrossRefGoogle Scholar
  2. 2.
    Calzada, E., Schillinger, B., Grünauer, F.: Construction and assembly of the neutron radiography and tomography facility ANTARES at FRM-II. Nucl. Inst. & Meth., A, 542, 38–44 (2005).CrossRefGoogle Scholar
  3. 3.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. PAMI, 6, 721–741 (1984).MATHGoogle Scholar
  4. 4.
    Herman, G. T., Kuba, A. (nteds.): Discrete Tomography: Ffoundations, Algorithms, and Applications. Birkhauser, Boston, MA (1999).Google Scholar
  5. 5.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York, NY (1987).Google Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing. Science, 220, 671–680 (1983).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kiss, Z., Rodek, L. Kuba, A.: Image reconstruction and correction methods in neutron and X-ray tomography. Acta Cybernetica, 17, 557–587 (2006).MATHMathSciNetGoogle Scholar
  8. 8.
    Krimmel, S., Baumann, J., Kiss, Z., Kuba, A., Nagy, A., Stephan, J.: Discrete tomography for reconstruction from limited view angles in non-destructive testing. Electr. Notes Discr. Math., 20, 455–474 (2005).CrossRefMathSciNetGoogle Scholar
  9. 9.
    Krimmel, S., Stephan, J., Baumann, J.: 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data. Nucl. Inst. & Meth, A, 542, 399–407 (2005).CrossRefGoogle Scholar
  10. 10.
    Kuba, A., Rodek, L., Kiss, Z., Rusko, L., Nagy, A., Balasko, M.: Discrete tomography in neutron radiography. Nucl. Inst. & Meth., A, 542, 376–382 (2005).CrossRefGoogle Scholar
  11. 11.
    Kuba, A., Rusko, L., Rodek, L., Kiss, Z.: Preliminary studies of discrete tomography in neutron imaging, IEEE Trans. Nucl. Sci., 52, 380–385 (2005).CrossRefGoogle Scholar
  12. 12.
    Robert, N., Peyrin, F., Yaffe, M. J.: Binary vascular reconstruction from a limited number of cone beam projections. Med. Phys., 21, 1839–1851 (1994).CrossRefGoogle Scholar
  13. 13.
    Schillinger, B., Abele, H., Brunner, J., Frei, G., Gähler, R., Gildemeister, A., Hillenbach, A., Lehmann, E., Vontobel, P.: Detection systems for short-time stroboscopic neutron imaging and measurements on a rotating engine. Nucl. Inst. & Meth., A, 542, 142–147 (2005).CrossRefGoogle Scholar
  14. 14.
    Schillinger, B.: Proposed combination of CAD data and discrete tomography for the detection of coking and lubricants in turbine blades or engines. Electr. Notes Discr. Math., 20, 493–499 (2005).CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zscherpel U., Osterloh, K., Ewert, U.: Unschärfeprobleme beim Einsatz digitaler Detektoren in der Durchstrahlungsprüfung. DGZfP Annual Meeting (2003). With associated web site http://www.ndt.net/article/dgzfp03/papers/v22/v22.htm.

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • J. Baumann
    • 1
  • Z. Kiss
    • 2
  • S. Krimmel
    • 3
  • A. Kuba
    • 2
  • A. Nagy
    • 2
  • L. Rodek
    • 2
  • B. Schillinger
    • 4
  • J. Stephan
    • 1
  1. 1.Corporate Technology PS 9MunichGermany
  2. 2.Dept. of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary
  3. 3.Physik Department E 21, Technical University MunichGarchingGermany
  4. 4.FRM-II, Technical University MunichGarchingGermany

Personalised recommendations