Advertisement

Abstract

This chapter discuses the excellent progress made in discrete tomography (DT) during the last seven years and includes a comprehensive bibliography illustrating this progress. It also presents some of the fundamental definitions relevant to DT.

Keywords

Binary Tomography Label Image Neutron Radiography Binary Matrice Discrete Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpers, A.: Instability and Stability in Discrete Tomography. Ph.D. Thesis, Technical Univ. of Munich, Shaker Verlag, Germany (2004).Google Scholar
  2. 2.
    Alpers, A., Brunetti, S.: On the stability of reconstructing lattice sets from X-rays along two directions. In: Andres, E., Damiand, G., Lienhardt, P. (eds.), Digital Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 92–103(2005).Google Scholar
  3. 3.
    Alpers, A., Gritzmann, P.: On stability, error correction, and noise compensation in discrete tomography. SIAM J. Discr. Math., 20, 227–239 (2006).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Alpers, A., Gritzmann, P., Thorens, L.: Stability and instability in discrete tomography. In: Bertrand, G., Imiya, A., Klette, R. (eds.), Digital and Image Geometry, Springer, Berlin, Germany, pp. 175–186 (2001).CrossRefGoogle Scholar
  5. 5.
    Alpers, A., Knudsen, E., Poulsen, H., Herman, G.: Resolving ambiguities in reconstructed grain maps using discrete tomography. Electr. Notes Discr. Math., 20, 419–437 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alpers, A., Poulsen, H., Knudsen, E., Herman, G.: A discrete tomography algorithm for improving the quality of 3DXRD grain maps. J. Appl. Crystallography, 39, 281–299 (2006).Google Scholar
  7. 7.
    Autrusseau, F., Guédon, J.: Chiffrement Mojette d’images m’medicales. Systemes d’Information de Santé (Ingénierie des Systémes d’Information-RSTI Série ISI), 8, 113–134 (2003).Google Scholar
  8. 8.
    Baake, M., Gritzmann, P., Huck, C., Langfeld, B., Lord, K.: Discrete tomography of planar model sets. Acta Crystallographica Section A., 62, 419–433 (2006).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bakirov, V.F., Kline, R.A., Winfree, W.P.: Discrete variable thermal tomography.In: Thompson, D.O., Chimenti, D.E. (eds.): Review of Quantitative Nondestructive Evaluation, American Institute of Physics, 23, pp. 469–476 (2004).Google Scholar
  10. 10.
    Balaskó, M., Kuba, A., Nagy, A., Kiss, Z., Rodek, L., Ruskó, L.: Neutrongamma-and X-ray three-dimensional computer tomography at the Budapest research reactor, Nucl. Inst. & Meth., A, 542, 22–27 (2005).CrossRefGoogle Scholar
  11. 11.
    Balaskó, M., Sváb, E., Kuba, A., Kiss, Z., Rodek, L., Nagy, A.,: Pipe corrosion and deposit study using neutron-and gamma-radiation sources, Nucl. Inst. & Meth., A, 542, 302–308 (2005).CrossRefGoogle Scholar
  12. 12.
    Balázs, P.: Reconstruction of decomposable discrete sets from four projections: Strong decomposability. In: Andres, E., Damiand, G., Lienhardt, P. (eds.), Discrete Geometry in Computer Imagery, Springer, Berlin, Germany, pp. 104–114 (2005).Google Scholar
  13. 13.
    Balázs, P.: Reconstruction of discrete sets from four projections: Strong decomposability.Electr. Notes Discr. Math., 20, 329–345 (2005)CrossRefGoogle Scholar
  14. 14.
    Balazs, P., Balogh, E., Kuba, A.: A fast algorithm for reconstructing hvconvex 8-connected but not 4-connected discrete sets. In: Nyström, I., Sanniti di Baja, G., Svenson, S. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 388–397 (2003).Google Scholar
  15. 15.
    Balázs, P., Balogh, E., Kuba, A.: Reconstruction of 8-connected but not 4-connected hv-convex discrete sets. Discr. Appl. Math., 147, 149–168 (2005).MATHCrossRefGoogle Scholar
  16. 16.
    Balogh, E., Kuba, A.: Reconstruction algorithms for hv-convex 4-and 8-connected discrete sets. In: Loncaric, S., Babic, H. (eds.), Proc. 2nd Intl.Symp. on Image and Signal Processing and Analysis, ISPA 2001, Pula, Croatia, pp. 49–54 (2001).Google Scholar
  17. 17.
    Balogh, E., Kuba, A., Del Lungo, A., Nivat, M.: Reconstruction of binary matrices from absorbed projections. In Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 392–403 (2002).CrossRefGoogle Scholar
  18. 18.
    Balogh, E., Kuba, A., Dévényi, C., Del Lungo, A.: Comparison of algorithms for reconstructing hv-convex discrete sets. Lin. Algebra Appl., 339, 23–35 (2001).MATHCrossRefGoogle Scholar
  19. 19.
    Barcucci, E., Brunetti, S., Del Lungo, A., Nivat, M.: Reconstruction of discrete sets from three or more X-rays. In: Bongiovanni, G., Gambosi, G., Petreschi, R. (eds.), Algorithms and Complexity, Springer, Berlin, Germany, pp. 199–210 (2000).CrossRefGoogle Scholar
  20. 20.
    Barcucci, E., Brunetti, S., Del Lungo, A., Nivat, M.: Reconstruction of lattice sets from their horizontal, vertical and diagonal X-rays. Discr. Math., 241, 65–78 (2001).MATHCrossRefGoogle Scholar
  21. 21.
    Barucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: X-rays characterizing some classes of discrete sets. J. Linear Algebra, 339, 3–21 (2001).CrossRefGoogle Scholar
  22. 22.
    Barcucci, E., Frosini, A., Rinaldi, S.: Reconstruction of discrete sets from two absorbed projections: An algorithm. Electr. Notes Discr. Math., 12 (2003)Google Scholar
  23. 23.
    Barcucci, E., Frosini, A., Rinaldi, S.: An algorithm for the reconstruction of discrete sets from two projections in presence of absorption. Discr. Appl. Math., 151, 21–35 (2005)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Batenburg, K.J.: Analysis and optimization of an algorithm for discrete tomography.Electr. Notes Discr. Math., 12 (2003)Google Scholar
  25. 25.
    Batenburg, K.J.: A new algorithm for 3D binary tomography. Electr. Notes Discr. Math., 20, 247–261 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Batenburg, K.J.: An evolutionary algorithm for discrete tomography. Discr.Appl. Math., 151, 36–54 (2005)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Batenburg, K.J.: Network Flow Algorithms for Discrete Tomography. Ph.D.Thesis, Leiden Univ., The Netherlands (2006)Google Scholar
  28. 28.
    Batenburg, K.J., Kosters, W.A.: A discrete tomography approach to Japanese Puzzles. In: Verbrugge, R., Taatgen, N., Schomaker, L. (eds.), Proc. 16th Belgian-Dutch Conf. Artificial Intelligence, Groningen, The Netherlands, pp. 243–250 (2004)Google Scholar
  29. 29.
    Batenburg, K.J., Kosters, W.A.: Neural networks for discrete tomography. In: Verbeeck, K., Tuyls, K., Nowé, A., Manderick, B., Kuijpers, B. (eds.), Proc.17th Belgian-Dutch Conf. Artificial Intelligence, Brussels, Belgium, pp. 21–27 (2005)Google Scholar
  30. 30.
    Batenburg, K.J., Palenstijn, W.J.: On the reconstruction of crystals through discrete tomography. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 23–37 (2006)Google Scholar
  31. 31.
    Batenburg, K.J., Sijbers, J.: Discrete tomography from micro-CT data: Application to the mouse trabecular bone structure. Proc. SPIE, 6142, pp. 1325–1335 (2006)Google Scholar
  32. 32.
    Battle, X.L., Bizais, Y.: 3D attenuation map reconstruction using geometrical models and free-form deformations. In: Beekman, F., Defrise, M., Viergever, M.(eds.), Proc. Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Egmond aan Zee, The Netherlands, pp. 181–184 (1999)Google Scholar
  33. 33.
    Battle, X.L., Bizais, Y., Le Rest, C., Turzo, A.: Tomographic reconstruction using free-form deformation models. Proc. SPIE, 3661, 356–367 (1999)CrossRefGoogle Scholar
  34. 34.
    Battle, X.L., Le Rest, A., Turzo, C., Bizais, Y.: Three-dimensional attenuation map reconstruction using geometrical models and free-form deformations. IEEE Trans. Med. Imag., 19, 404–411 (2000)CrossRefGoogle Scholar
  35. 35.
    Battle, X.L., Le Rest, A., Turzo, C. Bizais, Y.: Free-form deformation in tmographic reconstruction. Application to attenuation map reconstruction. IEEE Trans. Nucl. Sci., 47, 1065–1071 (2000)CrossRefGoogle Scholar
  36. 36.
    Bebeacua, C., Mansour, T., Postnikov, A., Severini, S.: On the X-rays of permutations.Electr. Notes Discr. Math., 20, 193–203 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Beldiceanu, N., Katriel, I., Thiel, S.: Filtering algorithms for the Same and UsedBy constraints. In: Regin, J.C., Rueher, M. (eds.), Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems Springer, Berlin, Germany, pp. 65–79 (2004)Google Scholar
  38. 38.
    Boufkhad, Y., Dubois, O., Nivat, M.: Reconstructing (h,v)-convex 2-dimensional patterns of objects from approximate horizontal and vertical projections.Theor. Comput. Sci., 290, 1647–1664 (2003)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Brewbaker, C.R.: Lonesum (0,1)-Matrices and Poly-Bernoulli Numbers of Negative Index. MSc. Thesis, Iowa State Univ. (2005)Google Scholar
  40. 40.
    Brimkov, V.E., Barneva, R.P.: Exact image reconstruction from a single projection through real computation. Electr. Notes Discr. Math., 20, 233–246 (2005)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Brualdi, R.A.: Minimal nonnegative integral matrices and uniquely determined (0,1)-matrices. Lin. Algebra Appl., 341, 351–356 (2002)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Brualdi, R.A., Dahl, G.: Matrices of zeros and ones with given line sums and a zero block. Lin. Algebra Appl., 371, 191–207 (2003)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Brualdi, R.A., Hwang, S.-G.: A Bruhat order for the class of (0,1)-matrices with row sum vector R and column sum vector.S. Electr. J. Linear Algebra, 12, 6–16 (2004)MathSciNetGoogle Scholar
  44. 44.
    Bruandet, J.P., Peyrin, F., Dinten, J.M., Amadieu, O., Barlaud, M.: Binary objects tomographic reconstruction from few noisy X-ray radiographs using a region based curve evolution method. IEEE Nuclear Science Symposium Conference Record, San Diego, USA, pp. 1717–1719 (2001)Google Scholar
  45. 45.
    Brunetti, S.: Convexity and Complexity in Discrete Tomography. Ph.D. Thesis, Univ. of Florence, Italy (2001)Google Scholar
  46. 46.
    Brunetti, S., Daurat, A.: Reconstruction of discrete sets from two or more X-rays in any direction. Proc. 7th Intl. Workshop on Combinatorial Image Analysis, Caen, France, pp. 241–258 (2000)Google Scholar
  47. 47.
    Brunetti, S., Daurat, A.: An algorithm reconstructing lattice convex sets. Theoret.Comput. Sci., 304, 35–57 (2003)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Brunetti, S., Daurat, A.: Stability in discrete tomography: Linear programming, additivity and convexity. In: Nystrom, I., Sanniti di Baja, G., Svensson, S. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 398–407 (2003)Google Scholar
  49. 49.
    Brunetti, S., Daurat, A.: Determination of Q-convex bodies by X-rays. Electr.Notes Discr. Math., 20, pp. 67–81 (2005)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Brunetti, S., Daurat, A.: Stability in discrete tomography: Some positive results.Discr. Appl. Math., 147, pp. 207–226 (2005)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Brunetti, S., Daurat, A., Del Lungo, A.: Approximate X-rays reconstruction of special lattice sets. Pure Math. Appl., 11, 409–425 (2000)MATHMathSciNetGoogle Scholar
  52. 52.
    Brunetti, S., Daurat, A., Del Lungo, A.: An algorithm for reconstructing special lattice sets from their approximate X-rays, In: Borgefors, G., Nyström, I., Sanniti di Baja, G. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 113–125 (2000)CrossRefGoogle Scholar
  53. 53.
    Brunetti, S., Del Lungo, A., Gerard, Y.: On the computational complexity of reconstructing three-dimensional lattice sets from their two dimensional X-rays.Lin. Algebra Appl. 339, 59–73 (2001)MATHCrossRefGoogle Scholar
  54. 54.
    Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 4-and 8-connected convex discrete sets from row and column projections. Lin. Algebra Appl. 339, 37–57 (2001)MATHCrossRefGoogle Scholar
  55. 55.
    Capricelli, T.D., Combettes, P.L.: Parallel block-iterative reconstruction algorithms for binary tomography. Electr. Notes Discr. Math., 20, 263–280 (2005)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Carvalho, B.M., Herman, G.T., Matej, S., Salzberg, C., Vardi, E.: Binary tomography for triplane cardiography. In: Kuba, A., Samal, M., ToddPokropek, A. (eds.), Information Processing in Medical Imaging, Springer, Berlin, Germany, pp. 29–41 (1999)CrossRefGoogle Scholar
  57. 57.
    Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: A tomographical characterization of L-convex polyominoes. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.), Discrete Geometry in Computer Imagery, Springer, Berlin, Germany, pp. 115–125 (2005)Google Scholar
  58. 58.
    Castiglione, G., Restivo, A.: Reconstruction of L-convex polyominoes. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  59. 59.
    Censor, Y.: Binary steering in discrete tomography reconstruction with sequential and simultaneous iterative algorithms. Lin. Algebra Appl., 339 111–124 (2001).MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Chrobak, M., Couperus, P., Dürr, C., Woeginger, G.: On tiling under tomographic constraints. Theor. Comp. Sci. 290, 2125–2136 (2003).MATHCrossRefGoogle Scholar
  61. 61.
    Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett., 69, 283–289 (1999).MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from X-rays: NPcompleteness proof for three atoms. Theor. Comp. Sci., 259, 81–98 (2001).MATHCrossRefGoogle Scholar
  63. 63.
    Costa, M. C., Jarray, F., Picouleau, C.: Reconstruction of binary matrices under adjacency constraints. Electr. Notes Discr. Math. 20, 281–297 (2005).MathSciNetCrossRefGoogle Scholar
  64. 64.
    Costa, M. C., de Werra, D., Picouleau, C.: Using graphs for some discrete tomography problems. Discr. Appl. Math., 154, 35–46 (2006).MATHCrossRefGoogle Scholar
  65. 65.
    Costa, M. C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image reconstruction in discrete tomography. Discr. Appl. Math., 148, 240–245 (2005).MATHCrossRefGoogle Scholar
  66. 66.
    Dahl, G., Brualdi, R.A.: Matrices of zeros and ones with given line sums and a zero block. Electr. Notes Discr. Math., 20, 83–97 (2003).MathSciNetCrossRefGoogle Scholar
  67. 67.
    Dahl, G., Flatberg, T.: Optimization and reconstruction of hv-convex (0, 1)matrices. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  68. 68.
    Dahl, G., Flatberg, T.: Optimization and reconstruction of hv-convex (0, 1)matrices. Discr. Appl. Math., 151, 93–105 (2005).MATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Daurat, A.: Convexité dans le Plan Discret. Application à la Tomographie, Ph.D. Thesis, LLAIC1, and LIAFA, Université Paris 7, France (2000).Google Scholar
  70. 70.
    Daurat, A.: Determination of Q-convex sets by X-rays. Theoret. Comput. Sci.,332 19–45 (2005).MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Daurat, A., Del Lungo, A., Nivat, M.: Medians of discrete sets according to a linear distance. Discrete Comput. Geom., 23, 465–483 (2000).MATHMathSciNetGoogle Scholar
  72. 72.
    Debled-Rennesson, I., Remy, J.-L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. In: Borgefors, G., Nyström, I., Sanniti di Baja, G. (eds.), Disc. Geometry in Computer Imagery Springer, Berlin, Germany, pp. 491–504 (2000).CrossRefGoogle Scholar
  73. 73.
    Debled-Rennesson, I., Remy, J.-L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. Discr. Appl. Math., 125, 115–133 (2003).MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Del Lungo, A.: Reconstructing permutation matrices from diagonal sums. Theor. Comput. Sci., 281, 235–249 (2002).MATHCrossRefGoogle Scholar
  75. 75.
    Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: Reconstruction under periodicity constraints. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.), Automata, Languages and Programming, Springer, Berlin, Germany, pp. 38–56 (2002).CrossRefGoogle Scholar
  76. 76.
    Del Lungo, A., Gronchi, P., Herman, G.T. (eds.): Proceedings of the Workshop on Discrete Tomography: Algorithms and Applications. Lin. Algebra Appl., 339, 1–219 (2001).CrossRefGoogle Scholar
  77. 77.
    Di Gesu, V.D., Valenti, C.: The stability problem and noisy projections in discrete tomography. J. Visual Languages and Computing, 15 361–371 (2004).CrossRefGoogle Scholar
  78. 78.
    Dulio, P., Gardner, R.J., Peri, C.: Discrete point X-rays of convex lattice sets. Electronic Notes in Discrete Math., 20, 1–13 (2005).MathSciNetCrossRefGoogle Scholar
  79. 79.
    Dulio, P., Gardner, R.J., Peri, C.: Discrete point X-rays. SIAM J. Discrete Math., 20, 171–188 (2006).MATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Dürr, C., Goles, E., Rapaport, I., Remila, E.: Tiling with bars under tomographic constraints. Theor. Comput. Sci., 290, 1317–1329 (2003).MATHCrossRefGoogle Scholar
  81. 81.
    Frosini, A.: Complexity Results and Reconstruction Algorithms for Discrete Tomography, Ph.D. Thesis, Univ. of Siena, Italy (2003).Google Scholar
  82. 82.
    Frosini, A., Barcucci, E., Rinaldi, S.: An algorithm for the reconstruction of discrete sets from two projections in present of absorption. Disc. Appl. Math., 151, 21–35 (2005).MATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Frosini, A., Nivat, M.: Binary matrices under the microscope. A tomographical problem. In: Klette, R, Zunic, J.D. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 1–22 (2004).Google Scholar
  84. 84.
    Frosini, A., Nivat, M., Vuillon, L.: An introductive analysis of periodical discrete sets from a tomographical point of view. Theor. Comput. Sci., 347, 370–392 (2005).MATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    Frosini, A., Rinaldi, S.: The complexity of the reconstruction of (r,h,v) from two projections and an approximation algorithm. Pure Math. Appl., 11, 485–496 (2000).MATHMathSciNetGoogle Scholar
  86. 86.
    Frosini, A., Rinaldi, S., Barcucci, E., Kuba, A.: An efficient algorithm for reconstructing binary matrices from horizontal and vertical absorbed projections.Electr. Notes Discr. Math., 20, 347–363 (2005).MathSciNetCrossRefGoogle Scholar
  87. 87.
    Frosini, A., Simi, G.: The reconstruction of a bicolored domino tiling from two projections. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.), Automata, Languages and Programming Springer, Berlin, Germany, pp. 136–144 (2002).Google Scholar
  88. 88.
    Frosini, A., Simi, G.: Reconstruction of low degree domino tilings. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  89. 89.
    Frosini, A., Simi, G.: The NP-completeness of a tomographical problem on bicolored domino tilings. Theor. Comput. Sci., 319, 447–454 (2004).MATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Gardner, R.J.: Geometric Tomography 2nd edition, Cambridge University Press, New York, NY (2006).MATHGoogle Scholar
  91. 91.
    Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets by X-rays. J. Linear Algebra, 339, 3–21 (2001).CrossRefGoogle Scholar
  92. 92.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202, 45–71 (1999).MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of determining polyatomic structures from by X-rays. Theor. Comput. Sci., 233, 91–106 (2000).MATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Gerard, Y.: Reduction from three-dimensional discrete tomography to multicommodity flow problem. Theor. Comput. Sci., 346, 300–306 (2005).MATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Gerard, Y., Feschet, F.: Application of a discrete tomography algorithm to computerized tomography. Electr. Notes Discr. Math., 20, 501–517 (2005).MathSciNetCrossRefGoogle Scholar
  96. 96.
    Gcebala, M.: The reconstruction of polyominoes from approximately orthogonal projections. In: Pacholski, L., Ruika, P. (eds.), ’Current Trends in Theory and Practice of Informatics, Springer, Berlin, Germany, pp. 253–260 (2001).Google Scholar
  97. 97.
    Gcebala, M.: The reconstruction of some 3D convex polyominoes from orthogonal projections. In: Grosky, W.I., Plásil, F. (eds.), Current Trends in Theory and Practice of Informatics, Springer, Berlin, Germany, pp. 262–272 (2002).Google Scholar
  98. 98.
    Gritzmann, P., de Vries, S.: On the algorithmic inversion of the discrete Radon transform. Theor. Comp. Science, 281, 455–469 (2001).CrossRefGoogle Scholar
  99. 99.
    Gritzmann, P., de Vries, S.: Reconstructing crystalline structures from few images under high resolution transmission electron microscopy. In: Jäger, W. (ed.), Mathematics: Key Technology for the Future, Springer, Berlin, Germany, pp. 441–459 (2003).Google Scholar
  100. 100.
    Gritzmann, P, de Vries, S., Wiegelmann, M.: Approximating binary images from discrete X-rays. SIAM J. Optim., 11, 522–546 (2000).MATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Guédon, J., Normand, N.: The mojette transform: The first ten years. In: Andres, Ê., Damiand, G., Lienhardt, P. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 79–91 (2005).Google Scholar
  102. 102.
    Hajdu, L.: Unique reconstruction of bounded sets in discrete tomography. Electr. Notes Discr. Math., 20, 15–25 (2005).MathSciNetCrossRefGoogle Scholar
  103. 103.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math., 534, 119–128 (2001).MATHMathSciNetGoogle Scholar
  104. 104.
    Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. J. Linear Algebra, 339, 147–169 (2001).MATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of emission tomography with absorption. Theoret. Comput. Sci., 290, 2169–2181 (2003).MATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston, MA (1999).MATHGoogle Scholar
  107. 107.
    Herman, G.T., Kuba, A.: Discrete tomography in medical imaging. Proc. IEEE, 91, 380–385 (2003).CrossRefGoogle Scholar
  108. 108.
    Herman, G.T., Kuba, A. (eds.): Proceedings of the Workshop on Discrete Tomography and Its Applications. Electronic Notes in Discrete Math., 20, 1–622 (2005).Google Scholar
  109. 109.
    Huck, C., Baake, M., Langfeld, B., Gritzmann, P., Lord, K.: Discrete tomography of mathematical quasicrystals: A primer. Electr. Notes Discr. Math., 20, 179–191 (2005).MathSciNetCrossRefGoogle Scholar
  110. 110.
    Imiya, A., Tirii, A., Sato, K.: Tomography on finite graphs. Electr. Notes Discr. Math., 20, 217–232 (2005).CrossRefGoogle Scholar
  111. 111.
    Jarray F.: Resolution de Problemes de Domographie Discrète. Applications à la Planification de Ppersonnel. Ph.D. Thesis, CNAM, Paris, France (2004).Google Scholar
  112. 112.
    Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F.R., Kisielowski, C.: Prospects for bright field and dark field electron tomography on a discrete grid. Microscopy and Microanalysis; Cambridge J. Online, 10, Suppl. 3 (2004).Google Scholar
  113. 113.
    Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Discrete tomography of Ga and InGa particles from HREM image simulation and exit wave reconstruction. In: Martin, D.C., Muller, D.A., Midgley, P.A., Stach, E.A. (eds.), Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure, Materials Research Society, Warrendale, PA, pp. 4.5.1–4.5.6 (2004).Google Scholar
  114. 114.
    Kaneko, A., Nagahama, R: Structure of total reconstructed sets from given two projection data. Electr. Notes Discr. Math., 20, 27–46 (2005).MathSciNetCrossRefGoogle Scholar
  115. 115.
    Kaneko, A., Nagahama, R: Switching graphs and digraphs associated with total reconstructed sets from two projection data. Nat. Sci. Report Ochanomizu Univ., 56, 33–45 (2005).MathSciNetGoogle Scholar
  116. 116.
    Kingston, A.M.: Extension and Application of Finite Discrete Radon Projection Theory. Ph.D. Thesis, Monash Univ., Australia (2005).Google Scholar
  117. 117.
    Kingston, A., Svalbe, I.: A discrete modulo N projective Radon transform for N×N images. In: Andres, É., Damiand, G., Lienhardt, P. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 136–147 (2005).Google Scholar
  118. 118.
    Kiss, Z., Rodek, L., Kuba, A.: Image reconstruction and correction methods in neutron and X-ray tomography. Simulation and physical experiments, Acta Cybernetica, 17, 557–587 (2006).MATHMathSciNetGoogle Scholar
  119. 119.
    Kiss, Z., Rodek, L., Nagy, A., Kuba, A., Balaskó, M.: Reconstruction of pixelbased and geometric objects by discrete tomography. Simulation and physical experiments, Electr. Notes Discr. Math., 20, 475–491 (2005).CrossRefGoogle Scholar
  120. 120.
    Krimmel, S., Baumann, J., Kiss, Z., Kuba, A., Nagy, A., Stephan, J.: Discrete tomography for reconstruction from limited view angles in non-destructive testing. Electr. Notes Discr. Math., 20, 455–474 (2005).MathSciNetCrossRefGoogle Scholar
  121. 121.
    Kuba, A.: Reconstruction in different classes of 2D discrete sets. In: Bertrands, G., Couprie, M., Perroton, L. (eds.): Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 1153–1163 (1999).Google Scholar
  122. 122.
    Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theor. Comput. Sci., 283, 223–242 (2002).MATHMathSciNetCrossRefGoogle Scholar
  123. 123.
    Kuba, A., Herman, G.T.: Discrete tomography: A historical overview. In: Herman, G.T., Kuba, A. (eds.), Discrete Tomography: Foundations, Algorithms, and Applications, Birkhäuser, Boston, MA, pp. 3–34 (1999).Google Scholar
  124. 124.
    Kuba, A., Herman, G.T., Matej, S., Todd-Pokropek, A.: Medical applications of discrete tomography. In: Du, D.Z., Pardalos, P.M., Wang, J. (eds.), Discrete Mathematical Problems in Medical Applications; DIM ACS Series in Discrete Mathematics and Theoretical Computer Science. AMS, Providence, RI, 55, pp. 195–208 (2000).Google Scholar
  125. 125.
    Kuba, A., Nagy, A.: Reconstruction of hv-convex binary matrices from their absorbed projections. Electr. Notes Theor. Comput. Sci., 46 (2001).Google Scholar
  126. 126.
    Kuba, A., Nagy, A., Balogh, E.: Reconstruction of hv-convex binary matrices from their absorbed projections. Discr. Appl. Math., 139, 137–148 (2004).MATHMathSciNetCrossRefGoogle Scholar
  127. 127.
    Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. In: Borgefors, G., Nyström, I., Sanniti di Baja, G. (eds.), Discrete Geometry in Computed Imagery, Springer, Berlin, Germany, pp. 137–148 (2000).Google Scholar
  128. 128.
    Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. Lin. Algebra Appl., 339, 171–194 (2001).MATHMathSciNetCrossRefGoogle Scholar
  129. 129.
    Kuba, A., Nivat, M.: A sufficient condition for non-uniqueness in binary tomography with absorption. Discr. Appl. Math., 346, 335–357 (2005).MATHMathSciNetGoogle Scholar
  130. 130.
    Kuba, A., Rodek, L., Kiss, Z., Ruskó, L., Nagy, A., Balaskó, M.: Discrete tomography in neutron radiography. Nucl. Inst. & Meth., A, 542, 376–382 (2005).CrossRefGoogle Scholar
  131. 131.
    Kuba, A., Ruskó, L., Kiss, Z., Nagy, A.: Discrete reconstruction techniques, Electr. Notes Discr. Math., 20, 385–398 (2005).CrossRefGoogle Scholar
  132. 132.
    Kuba, A., Ruskó, L., Rodek, L., Kiss, Z.: Preliminary studies of discrete tomography in neutron imaging, IEEE Trans. Nuclear Sci., 52, 380–385 (2005).CrossRefGoogle Scholar
  133. 133.
    Kuba, A., Ruskó, L., Rodek, L., Kiss, Z.: Application of discrete tomography in neutron imaging, In: Chirco, P. et al. (eds.): Proc. 7th World Conf. Neutron Radiography, Rome, Italy, pp. 361–371 (2005).Google Scholar
  134. 134.
    Kuba, A., Woeginger, G.: Two remarks on reconstructing binary matrices from their absorbed projections. In: Andres, Ê., Damiand, G., Lienhardt, P. (eds.), Discrete Geometry for Computer Imagery, Springer, Berlin, Germany, pp. 79–91 (2005).Google Scholar
  135. 135.
    Kudo, H., Nakamura, H.: A new approach to SPECT attenuation correction without transmission measurements. In: Proc. IEEE Nuclear Sci. Symp. and Medical Imaging Conf., pp. 13.58–13.62 (2000).Google Scholar
  136. 136.
    Liao, H.Y.: Reconstruction of Label Images Using Gibbs Priors. Ph.D. Thesis, City University of New York, New York, USA (2005).Google Scholar
  137. 137.
    Liao, H.Y., Herman, G.T.: Automated estimation of the parameters of Gibbs priors to be used in binary tomography. Electr. Notes Theor. Comput. Sci., 46 (2001).Google Scholar
  138. 138.
    Liao, H.Y., Herman, G.T.: Reconstruction of label images from a few projections as motivated by electron microscopy. In: IEEE 28th Annual Northeast Bioengineering Conf., Philadephia, PA, pp. 205–206 (2002).Google Scholar
  139. 139.
    Liao, H.Y., Herman, G.T.: Tomographic reconstruction of label images from a new projections. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  140. 140.
    Liao, H.Y., Herman, G.T.: Automated estimation of the parameters of Gibbs priors to be used in binary tomography. Discr. Appl. Math., 139, 149–170 (2004).MATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    Liao, H.Y., Herman, G.T.: A method for reconstructing label images from a few projections, as motivated by electron microscopy. Proc. IEEE Intl. Symp. on Biomedical Imaging, Arlington, VA, pp. 551–554 (2004).Google Scholar
  142. 142.
    Liao, H.Y., Herman, G.T.: Discrete tomography with a very few views, using Gibbs priors and a marginal posterior mode. Electr. Notes Discr. Math., 20, 399–418 (2005).MathSciNetCrossRefGoogle Scholar
  143. 143.
    Liao, H.Y., Herman, G.T.: Reconstruction by direct labeling in discrete tomography, using Gibbs priors and a marginal posterior mode approach. Proc. IEEE 31st Northeast Bioengineering Conf., Philadelphia, PA, pp. 134–135 (2005).CrossRefGoogle Scholar
  144. 144.
    Liao, H.Y., Herman, G.T.: A coordinate ascent approach to tomographic reconstruction of label images from a few projections. Discr. Appl. Math., 139, 184–197 (2005).MathSciNetCrossRefGoogle Scholar
  145. 145.
    Masilamani, V., Dersanambika, K.S., Krithivasan, K.: Binary 3D matrices under the microscope: A tomographical problem. Electr. Notes Discr. Math., 20, 573–586 (2005).MathSciNetCrossRefGoogle Scholar
  146. 146.
    Masilamani, V., Krithivasan, K.: An efficient reconstruction of 2D-tiling with t 1,2, t 2,1, t 1,1 tiles. In: Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 474–480 (2006).Google Scholar
  147. 147.
    Movassaghi, B., Rasche, V., Grass, M., Viergever, M.A., Niessen, W.J.: A quantitative analysis of 3-D coronary modeling from two or more projection images. IEEE Trans. Medical Imaging, 23, 1517–1531 (2004).CrossRefGoogle Scholar
  148. 148.
    Nagy, A., Kuba, A.: Reconstruction of binary matrices from fan-beam projections. Acta Cybernetica, 17, 359–385 (2005).MATHMathSciNetGoogle Scholar
  149. 149.
    Nagy, A., Kuba, A.: Parameter settings for reconstructing binary matrices from fan-beam projections. J. Comput. Info. Tech., 14, 101–110 (2006).CrossRefGoogle Scholar
  150. 150.
    Nagy, A., Kuba, A., Samal, M.: Reconstruction of factor structures using discrete tomography method. Electr. Notes Comput. Sci., 20, 519–534 (2005).MathSciNetGoogle Scholar
  151. 151.
    Nam, Y.: Integral matrices with given row and column sums. Ars Combinatorica, 52, 141–151 (1999).MATHMathSciNetGoogle Scholar
  152. 152.
    Nivat, M.: On a tomographic equivalence between (0,1)-matrices. In: Karhumäki, J., Maurer, H., Paun, G., Rozenberg, G. (eds.), Theory Is Forever, Springer, Berlin, Germany, pp. 216–234 (2004).Google Scholar
  153. 153.
    Normand, N., Guédon, J.: Spline mojette transform. Application in tomography and communication. Proc. EUSIPCO, 2, 407–410 (2002).Google Scholar
  154. 154.
    Picouleau, C.: Reconstruction of domino tiling from its two orthogonal projections. Theor. Comp. Sci., 255, 437–447 (2001).MATHMathSciNetCrossRefGoogle Scholar
  155. 155.
    Picouleau, C., Brunetti, S., Frosini, A.: Reconstructing a binary matrix under timetabling constraints. Electr. Notes Discr. Math., 20, 99–112 (2005).MathSciNetCrossRefGoogle Scholar
  156. 156.
    Popa, C., Zdunek, R.: Penalized least-squares image reconstruction for borehole tomography. Proc. ALGORITMY 2005, Podbanske, Slovakia, pp. 407–410 (2005).Google Scholar
  157. 157.
    Rodek, L., Knudsen, E., Poulsen, H., Herman, G.: Discrete tomographic reconstruction of 2D polycrystal orientation maps from X-ray diffraction projections using Gibbs priors. Electr. Notes Discr. Math., 20, 439–453 (2005).MathSciNetCrossRefGoogle Scholar
  158. 158.
    Ruskó, L., Kuba, A.: Multi-resolution method for binary tomography. Electr. Notes Discr. Math., 20, 299–311 (2005).CrossRefGoogle Scholar
  159. 159.
    Schillinger, B.: Proposed combination of CAD data and discrete tomography for the detection of coking and lubricants in turbine blades or engines. Electr. Notes Discr. Math., 20, 493–499 (2005).MathSciNetCrossRefGoogle Scholar
  160. 160.
    Schiile, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discr. Appl. Math., 151, 229–243 (2005).CrossRefGoogle Scholar
  161. 161.
    Schüle, T., Weber, S., Schnörr, C.: Adaptive reconstruction of discrete-valued objects from few projections. Electr. Notes in Discr. Math., 20, 365–384 (2005).CrossRefGoogle Scholar
  162. 162.
    Sensali, M., Gamero, L., Herment, A., Mousseaux, E.: 3D reconstruction of vessel lumen from very few angiograms by dynamic contours using a stochastic approach, Graph. Models, 62, 105–127 (2000).CrossRefGoogle Scholar
  163. 163.
    Servières, M.: Reconstruction Tomographique Mojette. Thèse de doctorat, Universitéde Nantes, France (2005).Google Scholar
  164. 164.
    Servières, M., Guédon, J., Normand, N.: A discrete tomography approach to PET reconstruction. In: Bizais, Y.J. (ed.), Proc. Fully 3D Reconstruction in Radiology and Nuclear Medicine, University of Brest, Brest, France (2003).Google Scholar
  165. 165.
    Sharif, B., Sharif, B.: Discrete tomography in discrete deconvolution: Deconvolution of binary images using Ryser’s algorithm. Electr. Notes in Discr. Math.,20, 555–571 (2005).MathSciNetCrossRefGoogle Scholar
  166. 166.
    Soussen, C.: Reconstruction 3D d’un Objet Compact en Tomographie. Ph.D. Thesis, Université de Paris-Sud, France, (2000).Google Scholar
  167. 167.
    Soussen, C., Muhammad-Djafari, A.: Contour-based models for 3D binary reconstruction in X-ray tomography. In: AIP Conference Proceedings, Gif-sur-Yvette, France, 568, pp. 543–554 (2001).CrossRefGoogle Scholar
  168. 168.
    Soussen, C., Muhammad-Djafari, A.: Polygonal and polyhedral contour reconstruction in computed tomography. IEEE Trans. Image Processing, 13, 1507–1523 (2004).CrossRefGoogle Scholar
  169. 169.
    Takiguchi, T.: Reconstruction of measurable plane sets from their orthogonal projections. Contemporary Math., 348, 199–208 (2004).MathSciNetGoogle Scholar
  170. 170.
    Valenti, C.: An Experimental Study of the Stability Problem in Discrete Tomography. Ph.D. Thesis, Univ. of Palermo, Italy (2002).Google Scholar
  171. 171.
    Valenti, C.: Discrete tomography from noisy projections. In: Series on Software Engineering and Knowledge Engineering, World Scientific Publishing, 15, 38–45 (2003).Google Scholar
  172. 172.
    Valenti, C.: An experimental study of the stability problem in discrete tomography. Electr. Notes Discr. Math., 20, 113–132 (2005).CrossRefGoogle Scholar
  173. 173.
    Vallejo, E.: Plane partitions and characters of the symmetric group. J. Algebraic Comb.,11, 79–88 (2000).MATHMathSciNetCrossRefGoogle Scholar
  174. 174.
    Vallejo, E.: The classification of minimal matrices of size 2×q. Lin. Algebra Appl., 340, 169–181 (2002).MATHMathSciNetCrossRefGoogle Scholar
  175. 175.
    Vallejo, E.: A characterization of additive sets. Discr. Math., 259, 201–210 (2002).MATHMathSciNetCrossRefGoogle Scholar
  176. 176.
    Vallejo, E.: Minimal matrices and discrete tomography. Electr. Notes in Discr. Math., 20, 113–132 (2005).MathSciNetCrossRefGoogle Scholar
  177. 177.
    Vardi, E., Herman, G.T., Kong, T.Y.: Speeding up stochastic reconstructions of binary images from limited projection directions. Lin. Algebra Appl., 339,75–89 (2001).MATHMathSciNetCrossRefGoogle Scholar
  178. 178.
    Venere, M., Liao, H., Clausse, A.: A genetic algorithm for adaptive tomography of elliptical objects. IEEE Signal Processing Letters, 7, 176–178 (2000).CrossRefGoogle Scholar
  179. 179.
    de Vries, S.: Discrete Tomography, Packing and Covering, and Stable Set Problems: Polytopes and Algorithms. Ph.D. Thesis, Technical Univ. of Munich, Germany (1999).Google Scholar
  180. 180.
    Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electr. Notes Discr. Math., 12 (2003).Google Scholar
  181. 181.
    Weber, S., Schüle, T., Hornegger, J., Schnörr, C.: Binary tomography by iterating linear programs from noisy projections. In: Klette, R, Zunic, J.D. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 38–51 (2004).Google Scholar
  182. 182.
    Weber, S., Schüle, T., Kuba, A., Schnörr, C.: Binary tomography with deblurring. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.), Combinatorial Image Analysis, Springer, Berlin, Germany, pp. 375–388 (2006).CrossRefGoogle Scholar
  183. 183.
    Weber, S., Schüle, T., Schnörr, C.: Prior learning and convex-concave regularization of binary tomography. Electr. Notes Discr. Math., 20, 313–327 (2005).CrossRefGoogle Scholar
  184. 184.
    Weber, S., Schüle, T., Schnörr, C., Hornegger, J.: A linear programming approach to limited angle 3D reconstruction from DSA projections. Methods of Information in Medicine, 43, 320–326 (2003).Google Scholar
  185. 185.
    Weber, G.-W., Yasar, Ô.: Discrete tomography: A modern inverse problem reconsidered by optimization. J. Comp. Tech., 9, 115–121 (2004).Google Scholar
  186. 186.
    Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Inform. Process. Lett., 77, 225–229 (2001).MATHMathSciNetCrossRefGoogle Scholar
  187. 187.
    Yagle, A.: A convergent composite mapping Fourier domain iterative algorithm for 3-D discrete tomography. Lin. Algebra Appl., 339, 91–109 (2001).MATHMathSciNetCrossRefGoogle Scholar
  188. 188.
    Yasar, Ô., Diner, C., Dogan, A., Weber, G.-W., Özbudak, F., Tiefenbach, A.: On the applied mathematics of discrete tomography. J. Comp. Tech., 9, 14–32 (2004).MATHGoogle Scholar
  189. 189.
    Ye, Y., Wang, G., Zhu, J.: Linear diophantine equations for discrete tomography. J. X-Ray Sci. Tech., 10, 59–66 (2001).Google Scholar
  190. 190.
    Zdunek, R., Pralat, A.: Detection of subsurface bubbles with discrete electromagnetic geotomography. Electr. Notes Discr. Math., 20, 535–553 (2005).MathSciNetCrossRefGoogle Scholar
  191. 191.
    Zopf, S., Kuba, A.: Reconstruction of measurable sets from two generalized projections. Electr. Notes Discr. Math., 20, 47–66 (2005).MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • A. Kuba
    • 1
  • G.T. Herman
    • 2
  1. 1.Dept. of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary
  2. 2.Dept. of Computer ScienceThe Graduate Center, City Univ. of New YorkNew YorkUSA

Personalised recommendations