Skip to main content

Latent Covariates in Generalized Linear Models: A Rasch Model Approach

  • Chapter
Advances in Statistical Methods for the Health Sciences

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

Study of multivariate data in situations where a variable of interest is unobservable (latent) and only measured indirectly is widely applied. Item response models are powerful tools for measurement and have been extended to incorporate latent structure. The (log-linear) Rasch model is a simple item response model where tests of fit and item parameter estimation can take place without assumptions about the distribution of the latent variable. Inclusion of a latent variable as predictor in standard regression models such as logistic or Poisson regression models is discussed, and a study of the relation between psychosocial work environment and absence from work is used to illustrate and motivate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E. B. (1994). Latent regression analysis, Research Report 106, Department of Statistics, University of Copenhagen, Denmark.

    Google Scholar 

  2. Andersen, E. B., and Madsen, M. (1977). Estimating the parameters of the latent population distribution, Psychometrika, 42, 357–374.

    Article  MATH  Google Scholar 

  3. Bollen, K. A. (1989). Structural Equations with Latent Variables, John Wiley & Sons, New York.

    MATH  Google Scholar 

  4. Christensen, K. B., and Bjorner, J. B. (2003). SAS macros for Rasch based latent variable modelling, Technical Report 03/13, Department of Biostatistics, University of Copenhagen, Denmark http://pubhealth.ku.dk/bs/publikationer.

    Google Scholar 

  5. Christensen, K. B., Bjorner, J. B., Kreiner, S., and Petersen, J. H. (2004). Latent regression in loglinear Rasch models, Communications in Statistics—Theory and Methods, 33, 1295–1313.

    Article  MATH  Google Scholar 

  6. Christensen, K. B., and Kreiner, S. (2004). Testing the fit of latent regression models, Communications in Statistics—Theory and Methods, 33, 1341–1356.

    Article  MATH  Google Scholar 

  7. De Boeck, P., and Wilson, M. (2004). Explanatory Item Response Models. A Generalized Linear and Nonlinear Approach, Springer-Verlag, New York.

    MATH  Google Scholar 

  8. Embretson, S. E. (1996). Item response theory models and spurious interaction effects in factorial ANOVA designs, Applied Psychological Measurement, 20, 201–212.

    Article  Google Scholar 

  9. Fischer, G. H., and Molenaar, I. W. (1995). Rasch Models—Foundations, Recent Developments, and Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  10. Fox, J. P., and Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling, Psychometrika, 66, 271–288.

    Article  Google Scholar 

  11. Fox, J. P., and Glas, C. A. W. (2002). Modeling Measurement Error in a Structural Multilevel Model, pp. 245–269, Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  12. Fox, J. P., and Glas, C. A. W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory, Psychometrika, 68, 169–191.

    Article  Google Scholar 

  13. Goldstein, H., Rasbash, J., Plewis, I., Draper, D., Browne, W., Yang, M., Woodhouse, G., and Healy, M. (1998). A User’s Guide to mlwin, Multilevel Models Project, Institute of Education, University of London, England.

    Google Scholar 

  14. Hoijtink, H. (1995). Linear and repeated measures models for the Person parameters, In Rasch Models—Foundations, Recent Developments, and Applications (Eds., G. H. Fischer, and I. W. Molenaar), pp. 203–214, Springer-Verlag, New York.

    Google Scholar 

  15. Hoijtink, H., and Boomsma, A. (1996). Statistical inference based on latent ability estimates, Psychometrika, 61, 313–330.

    Article  MATH  Google Scholar 

  16. Janssen, R., Tuerlinckx, F., Meulders, M., and De Boeck, P. (2000). A hierarchial IRT model for criterion-referenced measurement, Journal of Educational and Behavioral Statistics, 25, 285–306.

    Google Scholar 

  17. Kamata, A. (2001). Item analysis by the hierarchial generalized linear model, Journal of Educational Measurement, 38, 79–93.

    Article  Google Scholar 

  18. Kelderman, H. (1984). Loglinear Rasch model tests, Psychometrika, 49, 223–245.

    Article  MATH  Google Scholar 

  19. Kelderman, H. (1992). Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear item response theory, Psychometrika, 57, 437–450.

    Article  MATH  Google Scholar 

  20. Kreiner, S., and Christensen, K. B. (2002). Graphical Rasch Models, pp. 187–203, Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  21. Kreiner, S., and Christensen, K. B. (2004). Analysis of local dependence and multidimensionality in graphical loglinear rasch models, Communications in Statistics—Theory and Methods, 33, 1239–1276.

    Article  MATH  Google Scholar 

  22. Larsen, K., Petersen, J. H., Budtz-Jørgensen, H., and Endahl, L. (2000). Interpreting parameters in the logistic regression model with random effects, Biometrics, 56, 909–914.

    Article  MATH  Google Scholar 

  23. Liang K. Y., and Zeger, S. (1986). Longitudinal data analysis using generalized linear models, Biometrika, 73, 13–22.

    Article  MATH  Google Scholar 

  24. Maier, K. S. (2001). A Rasch hierarchial measurement model, Journal of Educational and Behavioral Statistics, 26, 307–330.

    Article  Google Scholar 

  25. McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models, Second edition, Chapman and Hall, London, England.

    MATH  Google Scholar 

  26. Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continous latent variable indicators, Psychometrika, 49, 115–132.

    Article  Google Scholar 

  27. Muthén, B. (1989). Latent variable modeling in heterogenous populations, Psychometrika, 54, 557–585.

    Article  Google Scholar 

  28. Muthén, L. K., and Muthén, B. (1998). Mplus: The Comprehensive Modelling Program for Applied Researchers, Users Manual, Muthén & Muthén, Los Angeles.

    Google Scholar 

  29. Nelder, J. A., and Wedderburn, R. W. M. (1972). Generalized linear models, Journal of the Royal Statistical Society, Series A, 135, 370–384.

    Article  Google Scholar 

  30. Pinheiro, J. C., and Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model, Journal of Computational and Graphical Statistics, 4, 12–35.

    Article  Google Scholar 

  31. Rabe-Hesketh, S., Pickles, A., and Skrondal, A. (2001). Gllamm manual, Technical Report 2001/01, Department of Biostatistics and Computing, Institute of Psychiatry, King’s College, London, http://www.iop.kcl.ac.uk/IoP/Departments/BioComp/programs/gllamm.html.

    Google Scholar 

  32. Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004). Generalised multilevel structural equation modelling, Psychometrika, 69, 183–206.

    Article  Google Scholar 

  33. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests, Danish National Institute for Educational Research, Copenhagen, Denmark; Expanded edition, University of Chicago Press, Chicago, 1980.

    Google Scholar 

  34. Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., and Congdon, Jr., R. T. (2000). HLM 5. Hierarchical Linear and Nonlinear Modeling, Scientific Software International, Inc., Lincolnwood, IL.

    Google Scholar 

  35. Skrondal, A., and Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings, Psychometrika, 68, 267–287.

    Article  Google Scholar 

  36. van der Linden, W. J., and Hambleton, R. K. (Eds.) (1997). Handbook of Modern Item Response Theory, Springer-Verlag, New York.

    MATH  Google Scholar 

  37. Zwinderman, A. H. (1991). A generalized Rasch model for manifest predictors, Psychometrika, 56, 589–600.

    Article  MATH  Google Scholar 

  38. Zwinderman, A. H. (1997). Response models with manifest predictors, In Handbook of Modern Item Response Theory (Eds., W. J. van der Linden, and R. K. Hambelton), pp. 245–258, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Christensen, K.B. (2007). Latent Covariates in Generalized Linear Models: A Rasch Model Approach. In: Auget, JL., Balakrishnan, N., Mesbah, M., Molenberghs, G. (eds) Advances in Statistical Methods for the Health Sciences. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4542-7_6

Download citation

Publish with us

Policies and ethics