Skip to main content

An Assessment of Up-and-Down Designs and Associated Estimators in Phase I Trials

  • Chapter
Advances in Statistical Methods for the Health Sciences

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 2288 Accesses

Abstract

In this article, we consider some up-and-down designs that are discussed in Ivanova et al. (2003) for estimating the maximum tolerated dose (MTD) in phase I trials: the biased coin design, k-in-a-row rule, Narayana rule, and continual reassessment method (CRM). A large-scale Monte Carlo simulation study, which is substantially more extensive than Ivanova et al. (2003), is conducted to examine the performance of these five designs for different sample sizes and underlying dose-response curves. For the estimation of MTD, we propose a modified maximum likelihood estimator (MMLE) in addition to those in Ivanova et al. (2003). The selection of different dose-response curves and their parameters allows us to evaluate the robustness features of the designs as well as the performance of the estimators. The results obtained, in addition to revealing that the new estimator performs better than others in many situations, enable us to make recommendations on designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical Inference under Order Restrictions, John Wiley & Sons, New York.

    MATH  Google Scholar 

  2. Clogg, C. C., Rubin, D. B., Schenker, N., Schultz, B., and Weidman, L. (1991). Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression, Journal of the American Statistical Association, 86, 68–78.

    Article  Google Scholar 

  3. Crowley, J. (2001). Handbook of Statistics in Clinical Oncology, Marcel Dekker, New York.

    Google Scholar 

  4. Durham, S. D., and Flournoy, N. (1994). Random walks for quantile estimation, In Statistical Decision Theory and Related Topics V (Eds., S. S. Gupta and J. O. Berger), pp. 467–476, Springer-Verlag, New York.

    Google Scholar 

  5. Durham, S. D., and Flournoy, N. (1995). Up-and-down designs I. Stationary treatment distributions, In Adaptive Designs (Eds., N. Flournoy and W. F. Rosenberger), pp. 139–157, Institute of Mathematical Statistics, Hayward, California.

    Google Scholar 

  6. Durham, S. D., Flournoy, N., and Rosenberger, W. F. (1997). A random walk rule for phase I clinical trials, Biometrics, 53, 745–760.

    Article  MATH  Google Scholar 

  7. Faries, D. (1994). Practical modifications of the continual reassessment method for phase I cancer clinical trials. Journal of Biopharmaceutical Statistics, 4, 147–164.

    Article  Google Scholar 

  8. Gezmu, M. (1996). The geometric up-and-down design for allocating dosage levels, Ph.D. Dissertation, American University, Washington, DC.

    Google Scholar 

  9. Ivanova, A., Montazer-Haghighi, A., Mohanty, S. G., and Durham, S. D. (2003). Improved up-and-down designs for phase I trails, Statistics in Medicine, 22, 69–82.

    Article  Google Scholar 

  10. Korn, E. L., Midthune, D., Chen, T. T., Rubinstein, L. V., Christian, M. C., and Simon, R. M. (1994). A comparison of two phase I trial designs, Statistics in Medicine, 13, 1799–1806.

    Article  Google Scholar 

  11. Narayana, T. V. (1953). Sequential procedures in the probit analysis, Ph.D. Dissertation, University of North Carolina, Chapel Hill, NC.

    Google Scholar 

  12. O’Quigley, J., Pepe, M., and Fisher, L. (1990). Continual reassessment method: a practical design for phase I clinical trials in cancer, Biometrics, 46, 33–48.

    Article  MATH  Google Scholar 

  13. Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order Restricted Statistical Inference, John Wiley & Sons, New York.

    MATH  Google Scholar 

  14. Storer, B. E. (1989). Design and analysis of phase I clinical trials, Biometrics, 45, 925–937.

    Article  MATH  Google Scholar 

  15. Stylianou, M., and Flournoy, N. (2002). Dose finding using the biased coin up-and-down design and isotonic regression, Biometrics, 58, 171–177.

    Article  Google Scholar 

  16. Stylianou, M., Proschan, M., and Flournoy, N. (2003). Estimating the probability of toxicity at the target dose following an up-and-down design, Statistics in Medicine, 22, 535–543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Ng, H.K.T., Mohanty, S.G., Balakrishnan, N. (2007). An Assessment of Up-and-Down Designs and Associated Estimators in Phase I Trials. In: Auget, JL., Balakrishnan, N., Mesbah, M., Molenberghs, G. (eds) Advances in Statistical Methods for the Health Sciences. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4542-7_24

Download citation

Publish with us

Policies and ethics