Local geometric Langlands correspondence and affine Kac-Moody algebras

  • Edward Frenkel
  • Dennis Gaitsgory
Part of the Progress in Mathematics book series (PM, volume 253)


Let \( \mathfrak{g} \) be a simple Lie algebra over ℂ and G a connected algebraic group with Lie algebra \( \mathfrak{g} \). The affine Kac-Moody algebra \( \hat {\mathfrak{g}} \) is the universal central extension of the formal loop agebra \( \mathfrak{g} \)((t)). Representations of \( \hat {\mathfrak{g}} \) have a parameter, an invariant bilinear form on \( \mathfrak{g} \), which is called the level. Representations corresponding to the bilinear form which is equal to minus one half of the Killing form are called representations of critical level. Such representations can be realized in spaces of global sections of twisted D-modules on the quotient of the loop group G((t)) by its “open compact” subgroup K, such as G[[t]] or the Iwahori subgroup I.


Abelian Category Verma Module Triangulate Category Forgetful Functor Versus Crit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ar]
    S. Arkhipov, A new construction of the semi-infinite BGG resolution, q-alg/9605043, 1996.Google Scholar
  2. [AB]
    A. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, math.RT/0201073, 2002.Google Scholar
  3. [ABG]
    S. Arkhipov, R. Bezrukavnikov, V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc., 17 (2004), 595–678.MATHCrossRefMathSciNetGoogle Scholar
  4. [AG1]
    S. Arkhipov and D. Gaitsgory, Differential operators on the loop group via chiral algebras, Internat. Math. Res. Notices, 2002-4 (2002), 165–210.MATHCrossRefMathSciNetGoogle Scholar
  5. [AG2]
    S. Arkhipov and D. Gaitsgory, Another realization of the category of modules over the small quantum group, Adv. Math., 173 (2003) 114–143.MATHCrossRefMathSciNetGoogle Scholar
  6. [BB]
    A. Beilinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 15–18.MATHMathSciNetGoogle Scholar
  7. [CHA]
    A. Beilinson and V. Drinfeld, Chiral Algebras, American Mathematical Society Colloquium Publications, Vol. 51, American Mathematical Society, Providence, RI, 2004.MATHGoogle Scholar
  8. [CHA1]
    A. Beilinson, Tensor products of topological vector spaces, addendum to [CHA].Google Scholar
  9. [BD1]
    A. Beilinson and V. Drinfeld, Quantization of Hitchin’s Integrable System and Hecke Eigensheaves, available online from http://www.math.uchicago.edu/~arinkin/langlands/.Google Scholar
  10. [BD2]
    A. Beilinson and V. Drinfeld, Opers, math.AG/0501398, 2005.Google Scholar
  11. [BG]
    A. Beilinson and V. Ginzburg, Wall-crossing functors and D-modules, Representation Theory, 3 (1999), 1–31.MATHCrossRefMathSciNetGoogle Scholar
  12. [Be]
    J. Bernstein, Trace in categories, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progress in Mathematics, Vol. 92, Birkhäuser Boston, Cambridge, MA, 1990, 417–423.Google Scholar
  13. [BL]
    J. Bernstein and V. Luntz, Equivariant Sheaves and Functors, Lecture Notes in Mathematics, Vol. 1578, Springer-Verlag, Berlin, 1994.MATHGoogle Scholar
  14. [Bez]
    R. Bezrukavnikov, unpublished manuscript.Google Scholar
  15. [Dr1]
    V. Drinfeld, DG quotients of DG categories, J. Algebra, 272 (2004), 643–691.MATHCrossRefMathSciNetGoogle Scholar
  16. [Dr2]
    V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry, in P. Etinghof, V. Retakh, and I. Singer, eds., The Unity of Mathematics, Birkhäuser Boston, Cambridge, MA, 2005, 263–304.Google Scholar
  17. [DS]
    V. Drinfeld and V. Sokolov, Lie algebras and KdV type equations, J. Soviet Math., 30 (1985), 1975–2036.CrossRefGoogle Scholar
  18. [EF]
    D. Eisenbud and E. Frenkel, Appendix to M. MustaţĂ, “Jet schemes of locally complete intersection canonical singularities,” Invent. Math., 145-3 (2001), 397–424.CrossRefMathSciNetGoogle Scholar
  19. [Fe]
    B. Feigin, The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras, Russian Math. Survey, 39-2 (1984), 155–156.CrossRefMathSciNetGoogle Scholar
  20. [FF1]
    B. Feigin and E. Frenkel, A family of representations of affine Lie algebras, Russian Math. Survey, 43-5 (1988), 221–222.MATHCrossRefMathSciNetGoogle Scholar
  21. [FF2]
    B. Feigin and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys., 128 (1990), 161–189.MATHCrossRefMathSciNetGoogle Scholar
  22. [FF3]
    B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, in A. Tsuchiya, T. Eguchi, and M. Jimbo, eds., Infinite Analysis, Advanced Series in Mathematical Physics, Vol. 16, World Scientific, Singapore, 1992, 197–215.Google Scholar
  23. [F]
    E. Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math., 195 (2005), 297–404.MATHCrossRefMathSciNetGoogle Scholar
  24. [FB]
    E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, 2nd ed., Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, RI, 2004.MATHGoogle Scholar
  25. [FG]
    E. Frenkel and D. Gaitsgory, D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J., 125 (2004), 279–327.MATHCrossRefMathSciNetGoogle Scholar
  26. [FGV]
    E. Frenkel, D. Gaitsgory, and K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. Math., 153 (2001), 699–748.MATHCrossRefMathSciNetGoogle Scholar
  27. [FT]
    E. Frenkel and K. Teleman, Self-extensions of Verma modules and differential forms on opers, Compositio Math., 142 (2006), 477–500.MATHCrossRefMathSciNetGoogle Scholar
  28. [Ga]
    D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., 144 (2001), 253–280.MATHCrossRefMathSciNetGoogle Scholar
  29. [Ga1]
    D. Gaitsgory, The notion of category over an algebraic stack, math.AG/0507192, 2005.Google Scholar
  30. [Ga2]
    D. Gaitsgory, Notes on Bezrukavnikov’s theory, in preparation.Google Scholar
  31. [GMS]
    V. Gorbounov, F. Malikov, and V. Schechtman, On chiral differential operators over homogeneous spaces, Internat. J. Math. Math. Sci., 26 (2001), 83–106.MATHCrossRefMathSciNetGoogle Scholar
  32. [KK]
    V. Kac and D. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math., 34 (1979), 97–108.MATHCrossRefMathSciNetGoogle Scholar
  33. [Ko]
    B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327–402.MATHCrossRefMathSciNetGoogle Scholar
  34. [Lan]
    R. P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, Berlin, New York, Heidelberg, 1970, 18–61.Google Scholar
  35. [Lau]
    G. Laumon, Transformation de Fourier, constantes d’équations fonctionelles et conjecture de Weil, Publ. I.H.E.S., 65 (1987), 131–210.MATHMathSciNetGoogle Scholar
  36. [Ma]
    K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series, Vol. 124, Cambridge University Press, Cambridge, UK, 1987.MATHGoogle Scholar
  37. [MV]
    I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, 2004.Google Scholar
  38. [Vog]
    D. Vogan, Local Langlands correspondence, in Representation Theory of Groups and Algebras, Contemporary Mathematics, Vol. 145, American Mathematical Society, Providence, RI, 1993, 305–379.Google Scholar
  39. [Vor]
    A. Voronov, Semi-infinite induction and Wakimoto modules, Amer. J. Math., 121 (1999), 1079–1094.MATHCrossRefMathSciNetGoogle Scholar
  40. [W]
    M. Wakimoto, Fock representations of affine Lie algebra A 1(1), Comm. Math. Phys., 104 (1986), 605–609.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • Edward Frenkel
    • 1
  • Dennis Gaitsgory
    • 2
  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations