Skip to main content

Local energy decay and Strichartz estimates for the wave equation with time-periodic perturbations

  • Chapter
Phase Space Analysis of Partial Differential Equations

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 69))

Abstract

We examine the memorphic continuation of the cut-off resolvent R χ(z) = χ(U(T, 0) ∊ z)−1χ, χ(x) ∊ C 0 (ℝn), where U(t, s) is the propagator related to the wave equation with non-trapping time-periodic perturbations (potential V (t, x) or a periodically moving obstacle) and T > 0 is the period. Assuming that R χ(z) has no poles z with |z| ≥ 1, we establish a local energy decay and we obtain global Strichartz estimates. We discuss the case of trapping moving obstacles and we present some results and conjectures concerning the behavior of R χ(z) for |z| > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bachelot and V. Petkov, itExistence des opérateurs d’ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. H. Poincaré, Phys. Théor. 47(1987), 383–428.

    MATH  MathSciNet  Google Scholar 

  2. J.-F. Bony and V. Petkov, Resonances for non-trapping time-periodic perturbations, J. Phys. A 37(2004), 9439–9449.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.-F. Bony and V. Petkov, Resolvent estimates and local energy decay of hyperbolic equations, Around Hyperbolic Systems, Conference in memory of Stefano Benvenuti, Ferrara 2005, to appear in Annali Universita di Ferrara, Sec. VII-Sci. Math. (2006), Springer.

    Google Scholar 

  4. J.-F. Bony and V. Petkov, Estimates for the cut-off resolvent of the Laplacian for trapping obstacles, Exposé Séminaire EDP, 2005–2006, Centre de Mathématiques, École Polytechnique.

    Google Scholar 

  5. N. Burq, Global Strichartz estimates for non-trapping geometries: about an article by H. F. Smith and C. D. Sogge, Comm. Partial Differential Equations 28(2003), 1675–1683.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179(2001), 409–425.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies, J. Funct. Anal. 47(1982), 180–229.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Galtbayar, A. Jensen and K. Yajima, Local time-decay of solutions to Schrödinger equations with time-periodic potentials, J. Statist. Phys. 116(2004), 231–281.

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Herbst, Contraction semigroups and the spectrum of A 1I +IA 2, J. Operator Theory 7(1982), 61–78.

    MATH  MathSciNet  Google Scholar 

  10. P. D. Lax and R. S. Phillips, Scattering Theory, 2nd Edition, Academic Press, New York, 1989.

    MATH  Google Scholar 

  11. H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equation, J. Funct. Anal. 130(1995), 357–426.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math. 120(1998), 955–980.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Melrose and J. Sjöstrand, Singularities of boundary value problems, Comm. Pure Appl. Math. I, 31(1978), 593–617, II, 35(1982), 129–168.

    Article  MATH  Google Scholar 

  14. V. Petkov, Scattering Theory for Hyperbolic Operators, North Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  15. V. Petkov, Global Strichartz estimates for the wave equation with time-periodic potentials, J. Funct. Anal. 235(2006), 357–376.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. POPOV and TZ. RANGELOV, Exponential growth of the local energy for moving obstacles, Osaka J. Math. 26(1989), 881–895.

    MATH  MathSciNet  Google Scholar 

  17. J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22(1969), 807–823.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Reissig and K. Yagdjian, L pL q estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, Math. Nachr. 214(2000), 71–104.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. F. Smith and C. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian, Comm. Partial Differential Equations 25(2000), 2171–2183.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. R. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach, New York, 1989.

    Google Scholar 

  21. B. R. Vainberg, On the local energy of solutions of exterior mixed problems that are periodic with respect to t, (Russian), Trudy Moskov. Mat. Obshch. 54(1992), 213–242, 279; translation in Trans. Moscow Math. Soc. 1993, 191–216.

    Google Scholar 

  22. G. Vodev, On the uniform decay of local energy, Serdica Math. J. 25(1999), 191–206.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Petkov, V. (2006). Local energy decay and Strichartz estimates for the wave equation with time-periodic perturbations. In: Bove, A., Colombini, F., Del Santo, D. (eds) Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 69. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4521-2_14

Download citation

Publish with us

Policies and ethics