Graph Distance Measures based on Intragraph Clustering and Cluster Distance

Part of the Progress in Computer Science and Applied Logic (PCS) book series (PCS, volume 24)


Various graph distance measures were considered in previous chapters. All of these measures have in common that the distance of two given graphs g1 and g2 is equal to zero if and only if g1 and g2 are isomorphic to each other. Sometimes, however, it may be desirable to have a more flexible distance measure for which d(g1, g2) = 0 if g1 and g2 are similar, but not necessarily isomorphic. Such a measure is potentially useful to make our graph-distance-based computer network monitoring procedures more robust against noise and small random perturbations.


Mutual Information Minimum Span Tree Edge Weight Rand Index Graph Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 2007

Personalised recommendations