Equivalence of Matrices. Reduction to Diagonal Form

  • Harold M. Edwards


Consider the linear substitution
with matrix of coefficients This substitution is easy to invert. That is, while the substitution expresses x, y, and z in terms of a, b, and c, one can easily express a, b, and c in terms of x, y, and z; merely subtract the second equation of (1) from the first to find
or, in the format of a linear substitution,


Identity Matrix Linear Algebra Diagonal Entry Nonzero Entry Successive Pair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Harold M. Edwards 1995

Authors and Affiliations

  • Harold M. Edwards
    • 1
  1. 1.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations