Advertisement

Inhomogeneities in Biological Membranes

  • R. Rosso
  • E. G. Virga
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This contribution is concerned with the mathematical modeling of biological membranes. In particular, it explores the role played by some structures that make them inhomogeneous

Keywords

Contact Angle Biological Membrane Equilibrium Shape Bilayer Thickness Spontaneous Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALa]
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., Molecular Biology of the Cell, Garland (1983).Google Scholar
  2. [ARa]
    Aranda-Espinoza, H., Berman, A., Dan, N., Pincus, P., and Safran, S., Interaction between inclusions embedded in membranes, Biophys. J., 71 (1996), 648–656.Google Scholar
  3. [BAa]
    Bartolo, P.G. and Fournier, J.-B., Elastic interaction between “hard” or “soft” pointwise inclusions on biological membranes, Eur. Phys. J. E, 11 (2003), 141–146.CrossRefGoogle Scholar
  4. [BEa]
    Benga, G. and Holmes, R.P., Interactions between components in biological membranes and their implications for membrane function, Prog. Biophys. Mol. Bio., 43 (1984), 195–257.CrossRefGoogle Scholar
  5. [BIa]
    Biscari, P., Bisi, F., and Rosso, R., Curvature effects on membrane-mediated interactions of inclusions, J. Math. Biol., 45 (2002), 37–56.MATHCrossRefMathSciNetGoogle Scholar
  6. [BIb]
    Biscari, P. and Bisi, F., Membrane-mediated interactions of rod-like inclusions, Eur. Phys. J. E, 7 (2002), 381–386.Google Scholar
  7. [BIc]
    Biscari, P. and Rosso, R., Inclusions embedded in lipid membranes, J. Phys. A: Math. Gen., 34 (2001), 439–459.MATHCrossRefMathSciNetGoogle Scholar
  8. [BId]
    Biscari, P., Canevese, S.M., and Napoli, G., Impermeability effects in three-dimensional vesicles, J. Phys. A: Math. Gen., 37 (2004), 6859–6874.MATHCrossRefMathSciNetGoogle Scholar
  9. [CAa]
    Canham, P.B., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol, 26 (1970), 61–81.CrossRefGoogle Scholar
  10. [CAb]
    Cantor, R.S., Lateral pressures in cell membranes: A mechanism for modulation of protein function, J. Phys. Chem. B, 101 (1997), 1723–1725.CrossRefGoogle Scholar
  11. [CAc]
    Cantor, R.S., The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria, Chem. Phys. Lip., 101 (1999), 45–56.CrossRefGoogle Scholar
  12. [CAd]
    Capovilla, R., and Guven, J., Stresses in lipid membranes, J. Phys. A: Math. Gen., 35 (2002), 6233–6247.MATHCrossRefMathSciNetGoogle Scholar
  13. [DAa]
    Dan, N., Berman, A., Pincus, P., and Safran, S.A., Membrane-induced interactions between inclusions, J. Phys. II France, 4 (1994), 1713–1725.CrossRefGoogle Scholar
  14. [DAb]
    Dan, N. and Safran, S.A., Effect of lipid characteristics on the structure of transmembrane proteins, Biophys. J., 75 (1998), 1410–1414.CrossRefGoogle Scholar
  15. [DEa]
    Deserno, M., Elastic deformation of a fluid membrane upon colloid binding, Phys. Rev. E, 69 (2004), 31903.CrossRefGoogle Scholar
  16. [DOa]
    Dommersnes, P.G. and Fournier, J.-B., Casimir and mean-field interactions between membrane inclusions subject to external torques, Europhys. Lett., 46 (1999), 256–261.CrossRefGoogle Scholar
  17. [DOb]
    Dommersnes, P.G. and Fournier, J.-B., The many-body problem for anisotropic membrane inclusions and the self-assembly of “saddle” defects into an “egg-carton,” Biophys. J., 83 (2002), 2898–2905.Google Scholar
  18. [DOc]
    Dommersnes, P.G., Fournier, J.-B., and Galatola, P., Long-range elastic forces between membrane inclusions in spherical vesicles, Europhys. Lett., 42 (1998), 233–238.CrossRefGoogle Scholar
  19. [FOa]
    Fournier, J.-B., Microscopic membrane elasticity and interac tions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes, Eur. Phys. J. B, 11 (1999), 261–272.CrossRefMathSciNetGoogle Scholar
  20. [GIa]
    Gil, T., Ipsen, J.H., Mouritsen, O.G., Sabra, M.C., Sperotto, M.M., and Zuckermann, M.J., Theoretical analysis of protein organization in lipid membranes., BBA-Rev. Biomembranes, 1376 (1998), 245–266.CrossRefGoogle Scholar
  21. [GOa]
    Golestanian, R., Goulian, and Kardar, M., Fluctuation-induced interactions between rods on membranes and interfaces, Europhys. Lett., 33 (1996), 241–245.CrossRefGoogle Scholar
  22. [GOb]
    Goulian, M., Bruinsma, R., and Pincus, P., Long-range forces in heterogeneous fluid membranes, Europhys. Lett., 22 (1993), 145–150.CrossRefGoogle Scholar
  23. [HAa]
    Hamm, M., and Kozlov, M.M., Tilt model of inverted amphiphilic mesophases, Eur. Phys. J. B, 6 (1998), 519–528.CrossRefGoogle Scholar
  24. [HAb]
    Hamm, M. and Kozlov, M.M., Elastic energy of tilt and bending of fluid membranes, Eur. Phys. J. E, 3 (2000), 323–335.CrossRefGoogle Scholar
  25. [HAc]
    Harroun, T.A., Heller, W.T., Weiss, T.M., Yang, L., and Huang, H.W., Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J. 76 (1999), 3176–3185.Google Scholar
  26. [HEa]
    Heinrich, V., Božič, vetina, S., and Žekš, B., Vesicle deformation by an axial load: from elongated shapes to tethered vesicles, Biophys. J. 76 (1999), 2056–2071.Google Scholar
  27. [HEb]
    Helfrich, P. and Jakobsson, E., Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels, Biophys. J. 57 (1990), 1075–1084.Google Scholar
  28. [HEc]
    Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch. C., 28 (1973), 693–703.Google Scholar
  29. [HEd]
    Helfrich, W., Steric interaction of fluid membranes in multilayer systems, Z. Naturforsch. A, 33 (1978), 305–315.Google Scholar
  30. [HOa]
    Holzlöhner, R., and Schoen, M., Attractive forces between anisotropic inclusions in the membrane of a vesicle, Eur. Phys. J. B, 12 (1999), 413–419.CrossRefGoogle Scholar
  31. [HOb]
    Hotani, H., Transformation pathways in liposomes, J. Molec. Biol., 178 (1984), 113–120.CrossRefGoogle Scholar
  32. [HOc]
    Hotani, H., Nomura, F., and Suzuki, Y., Giant liposomes: from membrane dynamics to cell morphogenesis, Curr. Opin. Coll. Interf. Sci., 4 (1999), 358–368.CrossRefGoogle Scholar
  33. [HUa]
    Huang, H.W., Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime, Biophys. J., 50 (1986), 1061–1070.Google Scholar
  34. [IGa]
    Iglič, A., Kralj-Iglic, V., and Hägerstrand, H., Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape, Eur. Biophys. J., 27 (1998), 335–339.CrossRefGoogle Scholar
  35. [ISa]
    Israelachvili J., Intermolecular and Surface Forces, Academic (1992).Google Scholar
  36. [JIa]
    Jiang, Y., Lookman, T., and Saxena, A., Phase separation and shape deformation of two-phase membranes, Phys. Rev. E, 61 (2000), R57–R60.CrossRefGoogle Scholar
  37. [JEa]
    Jensen, M.O. and Mouritsen, O.G., Lipids do influence protein function-the hydrophobic matching hypothesis revisited, BBA-Biomembranes, 1666 (2004), 205–226.CrossRefGoogle Scholar
  38. [JUa]
    Jülicher, F. and Lipowsky, R., Shape transformation of vesicles with intramembrane domains, Phys. Rev. E, 53 (1996), 2670–2683.CrossRefGoogle Scholar
  39. [KAa]
    Kawakatsu, T., Andelman, D., Kawasaki, K., and Taniguchi, T., Phase transitions and shapes of two component membranes and vesicles I: Strong segregation limit, J. Phys. II France, 3 (1993), 971–997.CrossRefGoogle Scholar
  40. [KIa]
    Kim, K.S., Neu, J., and Oster, G., Curvature-mediated interactions between membrane proteins, Biophys. J., 75 (1998), 2274–2291.Google Scholar
  41. [KIb]
    Kim, K.S., Neu, J., and Oster, G., Effect of protein shape on multi-body interactions between membrane inclusions, Phys. Rev. E, 61 (2000), 4281–4285.CrossRefGoogle Scholar
  42. [KOa]
    Koltover, L, Rädler, J., and Safinya, C.R., Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles, Phys. Rev. Lett., 82 (1999), 1991–1994.CrossRefGoogle Scholar
  43. [KRa]
    Kralchevsky, P.A. and Nagayama, K., Capillary forces between colloidal particles, Langmuir, 10 (1994), 23–36.CrossRefGoogle Scholar
  44. [KRb]
    Kralchevsky, P.A., Paunov, V.N., Denkov, N.D., and Nagayama, K., Stresses in lipid membranes and interactions between inclusions, J. Chem. Soc. Faraday Trans., 91 (1995), 3415–3432.CrossRefGoogle Scholar
  45. [KRc]
    Kralj-Iglič, V., Heinrich, V., Svetina, S., and Žekš, B., Free energy of closed membrane with anisotropic inclusions, Eur. Phys. J. B, 10 (1999), 5–8.CrossRefGoogle Scholar
  46. [KRd]
    Kralj-Iglič, V., Svetina, S., and Žekš, B., Shapes of bilayer vesicles with membrane embedded molecules, Eur. Biophys. J., 24 (1996), 311–321.CrossRefGoogle Scholar
  47. [LAa]
    Laradji, M. and Sunil Kumar, P.B., Dynamics of domain growth in self-assembled fluid vesicles, Phys. Rev. Lett, 93 (2004), 198105.CrossRefGoogle Scholar
  48. [LEa]
    Lee, A.G., How lipids affect the activities of integral membrane proteins, BBA-Biomembranes, 1666 (2004), 62–87.CrossRefGoogle Scholar
  49. [LIa]
    Lipowsky, R. and Dimova, R., Domains in membranes and vesicles, J. Phys: Condens. Matt., 15 (2003), S31–S45.CrossRefGoogle Scholar
  50. [LIb]
    Lipowsky, R., Budding of membranes induced by intramembrane domains, J. Phys. II France, 2 (1992), 1825–1840.CrossRefGoogle Scholar
  51. [LUa]
    Lubensky, T.C. and Prost, J., Orientational order and vesicle shape, J. Phys. II France, 2 (1992), 371–382.CrossRefGoogle Scholar
  52. [MAa]
    MacKintosh, F.C. and Lubensky, T.C, Orientational order, topology, and vesicle shapes, Phys. Rev. Lett., 67 (1991), 1169–1172.MATHCrossRefMathSciNetGoogle Scholar
  53. [MAb]
    Marchenko, V.I. and Misbah, C., Elastic interaction of point defects on biological membranes, Fur. Phys. J. E, 8 (2002), 477–484.Google Scholar
  54. [MAc]
    Markin, V.S., Lateral organization of membranes and cell shapes, Biophys. J., 36 (1981), 1–19.CrossRefGoogle Scholar
  55. [MAd]
    May, S., Theories on structural perturbations of lipid bilayers, Curr. Opin. Coll. Interf. Sci., 5 (2000), 244–249.CrossRefGoogle Scholar
  56. [MAe]
    May, S. and Ben-Shaul, A., Molecular theory of lipid-protein interaction and the L α-HII transition, Biophys. J., 76 (1999), 751–767.Google Scholar
  57. [MAf]
    May, S., Kozlovsky, Y., Ben-Shaul, A., and Kozlov, M.M., Tilt modulus of a lipid monolayer, Eur. Phys. J. E, 14 (2004), 299–308.CrossRefGoogle Scholar
  58. [MIa]
    Miao, L., Seifert, U., Wortis, M., and Döbereiner, H.-G., Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E, 49 (1994), 5389–5407.CrossRefGoogle Scholar
  59. [MUa]
    Mukhopadhyay, R., Lim, G.H.W., and Wortis, M., Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing, Biophys. J., 82 (2002), 1756–1772.Google Scholar
  60. [MUb]
    Müller, M.M., Deserno, M., and Guven, J., Geometry of surface-mediated interactions, Europhys. Lett., 69 (2005), 482–488.CrossRefGoogle Scholar
  61. [NIa]
    Nielsen, C., Goulian, M., and Andersen, O.S., Energetics of inclusion-induced bilayer deformations, Biophys. J., 74 (1998), 1966–1983.Google Scholar
  62. [ODa]
    Odell, E. and Oster, G., Curvature segregation of proteins in the Golgi, in Lectures on Mathematics in the Life Sciences, Vol. 24, Goldstein, B. and Wolfsy, C. Eds., (1994), pp. 23–36.Google Scholar
  63. [PAa]
    Pamplona, D.C. and Calladine, C.R., The mechanics of axially symmetric liposomes, J. Biomech. Eng. T-ASME, 115 (1993), 149–159.Google Scholar
  64. [PAb]
    Pamplona, D.C. and Calladine, C.R., Aspects of the mechanics of lobed liposomes, J. Biomech. Eng. T-ASME, 118 (1996), 482–488.Google Scholar
  65. [PAc]
    Park, J.-M. and Lubensky, T.C., Interactions between membrane inclusions on fluctuating membranes, J. Phys. I France, 6 (1996), 1217–1235.CrossRefGoogle Scholar
  66. [RIa]
    Ring, A., Gramicidin-channel induced lipid membrane deformation energy: influence of chain length and boundary conditions, BBA-Biomemhranes, 1278 (1996), 147–159.Google Scholar
  67. [ROa]
    Rosso, R., Sonnet, A.M., and Virga, E.G., Dynamics of kinks in biological membranes, Continuum Mech. Thermodyn., 14 (2002), 127–136.MATHCrossRefMathSciNetGoogle Scholar
  68. [ROb]
    Rosso, R., Curvature effects in vesicle-particle interactions, Proc. R. Soc. London A, 459 (2003), 829–852.MATHMathSciNetGoogle Scholar
  69. [SCa]
    Schröder, H., Aggregation of proteins in membranes. An example of fluctuation-induced interactions in liquid crystals, J. Chem. Phys., 67 (1977), 1617–1619.CrossRefGoogle Scholar
  70. [SEa]
    Seifert, U., Curvature-induced phase segregation in two component vesicles, Phys. Rev. Lett., 70 (1993), 1335–1338.CrossRefMathSciNetGoogle Scholar
  71. [SEb]
    Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46 (1997), 13–137.CrossRefGoogle Scholar
  72. [SEc]
    Seifert, U., Shillcock, J., and Nelson, P., Role of bilayer tilt difference in equilibrium membrane shapes, Phys. Rev. Lett., 77 (1996), 5237–5240.CrossRefGoogle Scholar
  73. [SEd]
    Sekimura, T. and Hotani, H., The morphogenesis of liposomes viewed from the aspect of bending energy, J. Theor. Biol., 149 (1991), 325–337.CrossRefGoogle Scholar
  74. [SEe]
    Selinger, J.V., MacKintosh, F.C., and Schnur, J.M., Theory of cylindrical tubules and helical ribbons of chiral lipid membranes, Phys. Rev. E, 53 (1996), 3804–3818.CrossRefGoogle Scholar
  75. [SHa]
    Sheetz, M.P. and Singer, S.J., Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions, Proc. Nat. Acad. Sci. USA, 71 (1974), 4457–4461.CrossRefGoogle Scholar
  76. [SUa]
    Sunil Kumar, P.B., Gompper, G., and Lipowsky, R., Budding dynamics of multicomponent membranes, Phys. Rev. Lett, 86 (2001), 3911–3914.CrossRefGoogle Scholar
  77. [SVa]
    Svetina, S. and Žekš, B., The elastic deformability of closed multi-layered membranes is the same of that of a bilayer membrane, Eur. Biophys. J., 21 (1992), 251–255.CrossRefGoogle Scholar
  78. [TAa]
    Taniguchi, T., Shape deformation and phase separation dynamics of two-component vesicles, Phys. Rev. Lett., 76 (1996), 4444–4447.CrossRefGoogle Scholar
  79. [TAb]
    Taniguchi, T., Kawasaki, K., Andelman, D., and Kawakatsu, T., Phase transitions and shapes of two component membranes and vesicles II: Weak segregation limit, J. Phys. II France, 4 (1994), 1333–1362.CrossRefGoogle Scholar
  80. [WAa]
    Waugh R.E., Elastic energy of curvature-driven bump formation on red blood cell membrane, Biophys. J., 70 (1996), 1027–1035.CrossRefGoogle Scholar
  81. [WEa]
    Weikl, T.R., Indirect interactions of membrane-adsorbed cylinders, Eur. Phys. J. E, 12 (2003), 265–273.CrossRefGoogle Scholar
  82. [WEb]
    Weikl, T.R., Kozlov, M.M., and Helfrich, W., Interaction of conical membrane inclusions: Effect of lateral tension, Phys. Rev. E, 57 (1998), 6988–6995.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • R. Rosso
    • 1
  • E. G. Virga
    • 1
  1. 1.Dipartimento di Matematica Università di PaviaPaviaItaly

Personalised recommendations