This chapter focuses on the mechanical aspects of tumor growth. After describing some of the main features of tumor growth and in particular the phenomena involving stress and deformation, the chapter deals with the multiphase framework recently developed to describe tumor growth and shows how the concept of evolving natural configurations can be applied to the specific problem. Some examples are then described according to the type of constitutive equation used, specifically focusing on contact inhibition of growth, nutrient-limited avascular growth, and interaction with the environment


Tumor Growth Biological Material Travel Wave Solution Mass Balance Equation Contact Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADa]
    Adam, J.A., and Bellomo, N., Eds. A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston (1996).Google Scholar
  2. [AMa]
    Ambrosi, D., and Guana, F., Stress modulated growth, Math. Mech. Solids., (2005) at 1081286505059739vl.
  3. [AMb]
    Ambrosi, D., and Mollica, F., On the mechanics of a growing tumor, Int. J. Engng. Sci., 40 (2002), 1297–1316.CrossRefMathSciNetGoogle Scholar
  4. [AMc]
    Ambrosi, D., and Mollica, F., The role of stress in the growth of a multicell spheroid, J. Math. Biol, 48 (2004), 477–499.Google Scholar
  5. [AMd]
    Ambrosi, D., and Preziosi, L., On the closure of mass balance models for tumor growth, Math. Mod. Meth. Appl. Sci. 12 (2002), 737–754.MATHCrossRefMathSciNetGoogle Scholar
  6. [ARa]
    Araujo, R.P., and McElwain, D.L.S., A history of the study of solid tumor growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039–1091.CrossRefMathSciNetGoogle Scholar
  7. [ARb]
    Araujo, R.P., and McElwain, D.L.S., A mixture theory for the genesis of residual stresses in growing tissues, I: A general formulation, SIAM J. Appl. Math., 65 (2005), 1261–1284.MATHCrossRefMathSciNetGoogle Scholar
  8. [ARc]
    Araujo, R.P., and McElwain, D.L.S., A mixture theory for the genesis of residual stresses in growing tissues, II: Solutions to the biphasic equations for a multicell spheroid, SIAM J. Appl. Math., 65 (2005), 1285–1299.CrossRefMathSciNetGoogle Scholar
  9. [ARd]
    Araujo, R.P., and McElwain, D.L.S., A linear-elastic model of anisotropic tumour growth, Eur. J. Appl. Math., 15 (2004), 365–384.MATHCrossRefMathSciNetGoogle Scholar
  10. [BAa]
    Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H., and Drenckhahn, D., Cadherin interaction probed by atomic force microscopy, Proc. Nat. Acad. Sci. USA, 97 (2000), 4005–4010.CrossRefGoogle Scholar
  11. [BEa]
    Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hofler, H., E-cadherin gene mutation provide clues to diffuse gastric carcinoma, Cancer Res., 54 (1994), 3845–3852.Google Scholar
  12. [BEb]
    Bellomo, N., and De Angelis, E., Eds. Special issue on modeling and simulation of tumor development, treatment, and control, Math. Comp. Modeling, 37 (2003).Google Scholar
  13. [BLa]
    Blatz, P.J., and Ko, W.L., Application of finite elasticity theory to the deformation of rubbery materials, Trans. Soc. Rheology, 6 (1962), 223–251.CrossRefGoogle Scholar
  14. [BRa]
    Breward, C.J.W., Byrne, H.M., and Lewis, C.E., The role of cellcell interactions in a two-phase model for avascular tumor growth, J. Math. BioL, 45 (2002), 125–152.MATHCrossRefMathSciNetGoogle Scholar
  15. [BRb]
    Breward, C.J.W., Byrne, H.M., and Lewis, C.E., A multiphase model describing vascular tumor growth, Bull. Math. BioL, 65 (2003), 609–640.CrossRefGoogle Scholar
  16. [BRc]
    Brewster, C.E., Howarth, P.H., Djukanovic, R., Wilson, J., Holgate, S.T., and Roche, W.R., Myofibroblasts and subepithelial fibrosis in bronchial asthma, Am. J. Respir. Cell Mol. Biol., 3 (1990), 507–511.Google Scholar
  17. [BRd]
    Brown, L.F., Guidi, A.J., Schnitt, S.J., van de Water, L., Iruela-Arispe, M.L., Yeo, T.-K., Tognazzi, K., and Dvorak, H.F., Vascular stroma formation in carcinoma in situ, invasive carcinoma and metastatic carcinoma of the breast, Clin. Cancer Res., 5 (1999), 1041–1056.Google Scholar
  18. [BUa]
    Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchiò, S., Mitola, S., Primo, L., and Serini, G., Biological aspects of tumour angiogenesis, in: Cancer Modeling and Simulation, Preziosi, L., Ed., Boca Raton, FL: Chapman & Hall/CRC Press, 1–22 (2003).Google Scholar
  19. [BYa]
    Byrne, H.M., King, J.R., McElwain, D.L.S., and Preziosi, L., A twophase model of solid tumor growth, Appl. Math. Letters, 16 (2003), 567–573.MATHCrossRefMathSciNetGoogle Scholar
  20. [BYb]
    Byrne, H.M., and Preziosi, L., Modeling solid tumor growth using the theory of mixtures, Math. Med. Biol, 20 (2004), 341–366.CrossRefGoogle Scholar
  21. [CAa]
    Canetta, E., Leyrat, A., Verdier, C., and Duperray, A., Measuring cell viscoelastic properties using a force-spectrometer: Influence of the protein-cytoplasm interactions, Biorheology, 42 (2005), 321–333.Google Scholar
  22. [CAb]
    Carmeliet, P., and Jain, R.K., Angiogenesis in cancer and other diseases, Nature, 407 (2000), 249–257.CrossRefGoogle Scholar
  23. [CAc]
    Castilla, M.A., Arroyo, M.V.A., Aceituno, E., Aragoncillo, P., Gonzalez-Pacheco, F.R., Texeiro, E., Bragado, R., and Caramelo, C., Disruption of cadherin-related junctions triggers autocrine expression of vascular endothelial growth factor in bovine aortic endothelial cells. Effect on cell proliferation and death resistance, Circ. Res., 85 (1999), 1132–1138.Google Scholar
  24. [CAd]
    Cavallaro, U., Schaffhauser, B., and Christofori, G., Cadherin and the tumor progression: Is it all in a switch?, Cancer Lett., 176 (2002), 123–128.CrossRefGoogle Scholar
  25. [CAe]
    Caveda, L., Martin-Padura, I., Navarro, P., Breviario, F., Corada, M., Gulino, D., Lampugnani, M.G., and Dejana, E., Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin), J. Clin. Invest., 98 (1996), 886–893.CrossRefGoogle Scholar
  26. [CHa]
    Chambers, A.F., and Matrisian, L.M., Changing views of the role of matrix metalloproteinases in metastasis, J. Natl. Cancer Inst., 89 (1997), 1260–1270.CrossRefGoogle Scholar
  27. [CHb]
    Chaplain, M.A.J., Ed. Special issue Math. Mod. Methods Appl. Sci., 9 (1999).Google Scholar
  28. [CHc]
    Chaplain, M.A.J., Ed. Special issue on Mathematical Modeling and Simulations of Aspects of Cancer Growth, J. Theor. Med., 4 (2002).Google Scholar
  29. [CHd]
    Chaplain, M.A.J., Mathematical Modelling of Tumour Growth, Springer, New York (2006).Google Scholar
  30. [CHe]
    Chaplain, M., Graziano, L., and Preziosi, L., Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006) 197–229.MATHCrossRefGoogle Scholar
  31. [CHf]
    Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., and Chiquet-Ehrismann, R., Regulation of extracellular matrix synthesis by mechanical stress, Biochem. Cell Biol., 74 (1996), 737–744.CrossRefGoogle Scholar
  32. [CHg]
    Christofori, G., and Semb, H., The role of cell-adhesion molecule E-cadherin as a tumors-suppressor gene, Trends Biochem. Sci., 24 (1999), 73–76.CrossRefGoogle Scholar
  33. [COa]
    Coats, S., Flanagan, W.M., Nourse, J., and Roberts, J., Requirement of p27kipl for restriction point control of the fibroblast cell cycle, Sctence, 272 (1996), 877–880.Google Scholar
  34. [CRa]
    Craft, P.S., and Harris, A.L., Clinical prognostic-significance of tumor angiogenesis, Annals of Oncology, 5 (1994), 305–311.Google Scholar
  35. [DEa]
    Dejana, E., Lampugnani, M.G., Giorgi, M., Gaboli, M., and Marchisio, P.C., Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor, Blood, 75 (1990), 1509–1517.Google Scholar
  36. [DEb]
    Deleu, L., Fuks, F., Spitkovsky, D., Hörlein, R., Faisst, S., and Rommelaere, J., Opposite transcriptional effects of cyclic AMP-responsive elements in confluent or p27kip-overexpressing cells versus serum-starved or growing cells, Molec. Cell. Biol., 18 (1998), 409–419.Google Scholar
  37. [DIa]
    Dietrich, C., Wallenfrang, K., Oesch, F., and Wieser, R., Differences in the mechanisms of growth control in contact-inhibited and serumdeprived human fibroblasts, Oncogene, 15 (1997), 2743–2747.CrossRefGoogle Scholar
  38. [DOa]
    Dorie, M.J., Kallman, R.F., Rapacchietta, D.F., Van Antwerp, D., and Huang, Y.R., Migration and internalisation of cells and polystyrene microspheres in tumour cell spheroids, Exp. Cell. Res., 141 (1982), 201–209.CrossRefGoogle Scholar
  39. [DOb]
    Dorie, M.J., Kallman, R.F., and Coyne, M.A., Effect of Cytochalasin B Nocodazole on migration and internalisation of cells and microspheres in tumour cells, Exp. Cell Res., 166 (1986), 370–378.CrossRefGoogle Scholar
  40. [ELa]
    Elliot, C.M., The Stefan problem with a non-monotone constitutive relation, IMA J. Appl. Math., 35 (1985), 257–264.MATHCrossRefMathSciNetGoogle Scholar
  41. [EYa]
    Eyre, D.R., Biochemistry of the invertebral disk, Int. Rev. Connect. Tissue Res., 8 (1979), 227–291.Google Scholar
  42. [FOa]
    Folkman, J., Tumor angiogenesis, Adv. Cancer Res., 19 (1974), 331–358.Google Scholar
  43. [FOb]
    Folkman, J., and Hochberg, M., Self-regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745–753.CrossRefGoogle Scholar
  44. [FRa]
    Franks, S.J., Byrne, H.M., King, J.R., Underwood, J.C.E., and Lewis, C.E., Modelling the early growth of ductal carcinoma in situ of the breast, J. Math. Biol., 47 (2003), 424–452.MATHCrossRefMathSciNetGoogle Scholar
  45. [FRb]
    Franks, S.J., Byrne, H.M., Mudhar, H.S., Underwood, J.C.E., and Lewis, C.E., Mathematical modelling of comedo ductal carcinoma in situ of the breast, Math. Med. Biol., 20 (2003), 277–308.MATHCrossRefGoogle Scholar
  46. [FRc]
    Franks, S.J., and King, J.R., Interactions between a uniformly proliferating tumor and its surrounding. Uniform material properties, Math. Med. Biol., 20 (2003), 47–89.MATHCrossRefGoogle Scholar
  47. [FRd]
    Freyer, J.P., and Sutherland, R.M., Regulation of growth saturation and development of necrosis in EMT6/R0 multicellular spheroids by the glucose and oxygen supply, Cancer Res., 46 (1986), 3504–3512.Google Scholar
  48. [GOa]
    Gottardi, C.J., Wong, E., and Gumbiner, B.M., E-cadherin suppresses cellular transformation by inhibiting β-catenin signalling in an adhesion-independent manner, J. Cell. Biol., 153 (2001), 1049–1060.CrossRefGoogle Scholar
  49. [HAa]
    Harja, K.M., and Fearon, E.R., Cadherin and catenin alterations in human cancer, Genes Chromosomes Cancer, 34 (2002), 255–268.CrossRefGoogle Scholar
  50. [HEa]
    Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and Jain, R.K., Solid stress inhibits the growth of multicellular tumour spheroids, Nature Biotech., 15 (1997), 778–783.CrossRefGoogle Scholar
  51. [HEb]
    Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and Jain, R.K., Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotech., 15 (1997), 778–783.CrossRefGoogle Scholar
  52. [HIa]
    Hillen, T., Hyperbolic models for chemosensitive movement, Math. Mod. Meth. Appl. Sci., 12 (2002), 1007–1034.MATHCrossRefMathSciNetGoogle Scholar
  53. [JAa]
    Jackson, T.L., and Byrne, H.M., A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumours to chemotherapy, Math. Biosci., 164 (2000), 17–38.MATHCrossRefMathSciNetGoogle Scholar
  54. [JOa]
    Johnson, P.R.A., Role of human airway smooth muscle in altered extracellular matrix production in asthma, Clin. Exp. Pharm. Physiol., 28 (2001), 233–236.CrossRefGoogle Scholar
  55. [JOb]
    Jones, A.F., Byrne, H.M., Gibson, J.S., and Dold, J.W., A mathematical model of the stress induced during solid tumour growth, J. Math. Biol., 40 (2000), 473–499.MATHCrossRefMathSciNetGoogle Scholar
  56. [KAa]
    Kato, A., Takahashi, H., Takahashi, Y., and Matsushime, H., Inactivation of the cyclin D-dependent kinase in the rat fibroblast cell line, 3Y1, induced by contact inhibition, J. Biol. Chem., 272 (1997), 8065–8070.CrossRefGoogle Scholar
  57. [KIa]
    Kim, S.-G., Akaike, T., Sasagawa, T., Atomi, Y., and Kurosawa, H., Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells, Cell Struct. Funct., 27 (2002), 139–144.CrossRefGoogle Scholar
  58. [KJa]
    Kjaer, M., Role of extracellular matrix in adaptation of tendons and skeletal muscle to mechanical loading, Physiol. Rev., 84 (2004), 649–698.CrossRefGoogle Scholar
  59. [KLa]
    Klominek, J., Robert, K.H., and Sundqvist, K.-G., Chemotaxis and haptotaxis of human malignant mesothelioma cells: Effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance, Cancer Res., 53 (1993), 4376–4382.Google Scholar
  60. [KOa]
    Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl, 305 (2005), 566–588.MATHCrossRefMathSciNetGoogle Scholar
  61. [LAa]
    Lawrence, J.A., and Steeg, P.S., Mechanisms of tumor invasion and metastasis, World J. Urol., 14 (1996), 124–130.CrossRefGoogle Scholar
  62. [LEa]
    Levenberg, S., Yarden, A., Kam, Z., and Geiger, B., p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry, Oncogene, 18 (1999), 869–876.CrossRefGoogle Scholar
  63. [LEb]
    Levick, J.R., Flow through interstitium and other fibrous matrices, Q. J. Cogn. Med. Sci., 72 (1987), 409–438.Google Scholar
  64. [LIa]
    Liotta, L.A., and Kohn, E.C., The microenvironment of the tumorhost interface, Nature, 411 (2001), 375–379.CrossRefGoogle Scholar
  65. [MAa]
    MacKenna, D., Summerour, S.R., and Villarreal, F.J., Role of mechanical factors inmodulatin cardiac fibroblast function and extracellular matrix synthesis, Cardiovasc. Res., 46 (2000), 257–263.CrossRefGoogle Scholar
  66. [MAb]
    Mantzaris, N., Webb, S., and Othmer, H.G., Mathematical modelling of tumour-induced angiogenesis, J. Math. Biol. 49 (2004), 111–187 (2004).MATHCrossRefMathSciNetGoogle Scholar
  67. [MAc]
    Mao, J.J., and Nah, H.-D., Growth and development: Hereditary and mechanical modulations, Amer. J. Orthod. Dentofac. Orthop., 125 (2004), 676–689.CrossRefGoogle Scholar
  68. [MAd]
    Matrisian, L.M., The matrix-degrading metalloproteinases, Bioessays, 14 (1992), 455–463.CrossRefGoogle Scholar
  69. [MAe]
    Maurice, D.M., The cornea and the sciera, in The Eye, Davson, H., Ed., Academic Press, (1984) 1–158.Google Scholar
  70. [MOa]
    Mow, V.C., Holmes, M.H., and Lai, W.M., Fluid transport and mechanical problems of articular cartilage: A review, J. Biomech., 17 (1984), 377–394.CrossRefGoogle Scholar
  71. [MOb]
    Mow, V.C. and Lai, W.M., Mechanics of animal joints, Ann. Rev. Fluid Mech., 11 (1979), 247–288.CrossRefGoogle Scholar
  72. [NEa]
    Nelson, CM., and Chen, C.S., VE-cadherin simultaneously stimulates ad inhibits cell proliferation by altering cytoskeletal structure and tension, J. Cell Science, 116 (2003), 3571–3581.CrossRefGoogle Scholar
  73. [ODa]
    Oda, T., Kanai, Y., Okama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., Sugimura, T., and Hirohashi, S., E-cadherin gene mutation in human gastric carcinoma cell lines, Proc. Natl. Acad. Sci. USA, 91 (1994), 1858–1862.CrossRefGoogle Scholar
  74. [ORa]
    Orford, K., Orford, C.C., Byers, S.W., Exogenous expression of β-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest, J. Cell Biol. 146 (1999), 855–867.CrossRefGoogle Scholar
  75. [PAa]
    Painter, K., and Hillen, T., Volume filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501–543.MATHMathSciNetGoogle Scholar
  76. [PAb]
    Parson, S.L., Watson, S.A., Brown, P.D., Collins, H.M., and Steele, R.J.C., Matrix metalloproteinases, Brit. J. Surg., 84 (1997), 160–166.CrossRefGoogle Scholar
  77. [PAc]
    Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., and Weaver, V.M., Tensional homeostasis and the malignant phenotype, Cancer Cell 8 (2005), 241–254.CrossRefGoogle Scholar
  78. [POa]
    Polyak, K., Kato, J., Solomon, M.J., Sherr, C.J., Massague, J., Roberts, J.M., and Kofi, A., p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest, Genes & Develop., 8 (1994), 9–22.CrossRefGoogle Scholar
  79. [PRa]
    Preziosi, L., Ed., Cancer Modelling and Simulation, CRC-Press/ Chapman Hall, Boca Raton, Fl (2003).MATHGoogle Scholar
  80. [PRb]
    Preziosi, L., and Farina, A., On Darcy’s law for growing porous media, Int. J. Nonlinear Mech., 37 (2001), 485–491.CrossRefGoogle Scholar
  81. [PUa]
    Pujuguet, P., Hammann, A., Moutet, M., Samuel, J.L., Martin, F., and Martin, M., Expression of fibronectin EDA+ and EDB+ isoforms by human and experimental colorectal cancer, Am. J. Patho., 148 (1996), 579–592.Google Scholar
  82. [RAa]
    Rao, I.J., Humphrey, J.D., and Rajagopal, K.R., Biological growth and remodeling: A uniaxial example with possible application to tendons and ligaments, CMES, 4 (2003), 439–455.MATHGoogle Scholar
  83. [RIa]
    Risinger, J.I., Berchuck, A., Kohler, M.F., and Boyd, J., Mutation of E-cadherin gene in human gynecological cancers, Nature Genetics, 7 (1994), 98–102.CrossRefGoogle Scholar
  84. [SEa]
    Secomb, T.W., and El-Kareh, A.W., A theoretical model for the elastic properties of very soft tissues, Biorheology, 38 (2001), 305–317.Google Scholar
  85. [STa]
    St. Croix, B., Sheehan, C., Rak, J.W., Florenes, V.A., Slingerland, J.M., and Kerbel, R.S., E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27 (Kipl), J. Cell Biol, 142 (1998), 557–571.CrossRefGoogle Scholar
  86. [STb]
    Stetler-Stevenson, W.G., Hewitt, R., and Corcoran, M., Matrix metallo-proteinases and tumor invasion: Prom correlation to causality to the clinic, Cancer Biol., 7 (1996), 147–154.CrossRefGoogle Scholar
  87. [STc]
    Stockinger, A., Eger, A., Wolf, J., Beug, H., and Foisner, R., E-cadherin regulates cell growth by modulating proliferationdependent β-catenin transcriptional activity, J. Cell. Biol., 152 (2001), 1185–1196.CrossRefGoogle Scholar
  88. [SUa]
    Sutherland, R.M., Cell and environment interactions in tumor microregions: The multicell spheroid model, Science, 240 (1988), 177–184.CrossRefGoogle Scholar
  89. [TAa]
    Takeuchi, T., Misaki, A., Liang, S.-B., Tachibana, A., Hayashi, N., Sonobe, H., and Ohtsuki Y., Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells, J. Neurochem., 74 (2000), 1489–1497.CrossRefGoogle Scholar
  90. [TAb]
    Takeuchi, J., Sobue, M., Sato, E., Shamoto, M., and Miura, K., Variation in glycosaminoglycan components of breast tumors, Cancer Res., 36 (1976), 2133–2139.Google Scholar
  91. [TSa]
    Tseng, S.C.G., Smuckler, D., and Stern, R., Comparison of collagen types in adult and fetal bovine corneas, J. Biol. Chem., 257 (1982), 2627–2633.Google Scholar
  92. [TZa]
    Tzukatani, Y., Suzuki, K., and Takahashi, K., Loss of densitydependent growth inhibition and dissociation of α-catenin from E-cadherin, J. Cell. Physiol., 173 (1997), 54–63.CrossRefGoogle Scholar
  93. [TZb]
    Tzukita, S., Itoh, M., Nagafuchi, A., Yonemura, S., and Tsukita, S., Submembrane junctional plaque proteins include potential tumor suppressor molecules, J. Cell Biol., 123 (1993), 1049–1053.CrossRefGoogle Scholar
  94. [UGa]
    Uglow, E.B., Angelini, G.D., and George, S.J., Cadherin expression is altered during intimai thickening in humal sapphenous vein, J. Submicrosc. Cytol. Pathol. 32 (2000), C113–C119.Google Scholar
  95. [UGb]
    Uglow, E.B., Slater, S., Sala-Newby, G.B., Aguilera-Garcia, CM., Angelini, G.D., Newby, A.C., and George, S.J., Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation, Circ. Res., 92 (2003), 1314–1321.CrossRefGoogle Scholar
  96. [WAa]
    Warchol, M.E., Cell proliferation and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear, J. Neurosci., 22 (2002), 2607–2616.Google Scholar
  97. [WIa]
    Witelski, T.P., Shocks in nonlinear diffusion, Appl. Math. Lett., 8 (1995), 27–32.MATHCrossRefMathSciNetGoogle Scholar
  98. [WOa]
    Woo, S.L.-Y., Biomechanics of tendon and ligaments, in Frontiers in Biomechanics, G. W. Schmid-Schonbein, S. L.-Y. Woo and Zweifach, B.W., Eds., Springer-Verlag, New York, 180–195 (1986).Google Scholar
  99. [YAa]
    Yang, C.-M., Chien, C.-S., Yao, C.-C., Hsiao, L.-D., Huang, Y.-C., and Wu, C.B., Mechanical strain induces collagenases-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells, J. Biol. Chemistry, 279 (2004), 22158–22165.CrossRefGoogle Scholar
  100. [ZHa]
    Zhang, Y., Nojima, S., Nakayama, H., Yulan, J., and Enza, H., Characteristics of normal stromal components and their correlation with cancer occurrence in human prostate, Oncol. Rep., 10 (2003), 207–211.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • L. Graziano
    • 1
  • L. Preziosi
    • 1
  1. 1.Department of MathematicsPolytechnic of TurinTorinoItaly

Personalised recommendations