Skip to main content

Regulation of Hemostatic System Function by Biochemical and Mechanical Factors

  • Chapter
Modeling of Biological Materials
  • 1049 Accesses

Abstract

The mammalian hemostatic system has evolved to accomplish the task of sealing defects in the cardiovascular system. Hemostasis occurs in and around a disruption in a vascular conduit through which blood normally flows, and is characterized by the localized formation of thrombus. Consequently, the process of hemostasis is influenced by: (1) the biochemical properties of the cellular and soluble components of the hemostatic system, counterregulatory networks, and the vascular conduit; (2) the local hemodynamic conditions, which regulate the influx and efflux of substrates, cofactors, and catalysts, and which also impose loads on the forming clot; and (3) the local mechanical properties of the vasculature. We review the components of the hemostatic and negative regulatory systems and their biochemical functions, and the roles that local hemodynamics play in the regulation of hemostasis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmeppen, J., Hansen, E., Bonnlander, G., Horch, R., and Jeschke, M., Composition and characteristics of an autologous thrombocyte gel. J. Surg Res., 117 (2004), 202–207.

    Article  Google Scholar 

  2. Amin, T. and Sirs, J., The blood rheology of man and various animal species. Q. J. Exp. Physiol, 70 (1985), 37–49.

    Google Scholar 

  3. Anand, M., Rajagopal, K. and Rajagopal, K., A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med., 5 (2003).

    Google Scholar 

  4. Baer, P. and Cagen, L., Platelet activating factor vasoconstriction of dog kidney. Inhibition by alprazolam. Hypertension, 9 (1987), 253–260.

    Google Scholar 

  5. Berne, R. and Levy, M., Cardiovascular Physiology. Mosby, St. Louis (1992).

    Google Scholar 

  6. Bjork, I. and Lindahl, U., Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem., 48 (1982), 161–182.

    Article  Google Scholar 

  7. Bockenstedt, P., Greenberg, J. and Handin, R., Structural basis of von Willebrand factor binding to platelet glycoprotein Ib and collagen. Effects of disulflde reduction and limited proteolysis of polymeric von Willebrand factor. J. Clin. Invest., 77 (1986), 743–749.

    Google Scholar 

  8. Bontempo, F., Lewis, J., Gorenc, T., Spero, J., Ragni, M., Scott, J. and Starzl, T., Liver transplantation in hemophilia A. Blood, 69 (1987), 1721–1724.

    Google Scholar 

  9. Boyle Kay, M. and Fudenberg, H., Inhibition and reversal of platelet activation by cytochalasin B or colcemid. Nature, 244 (1973), 288–289.

    Article  Google Scholar 

  10. Broze, G.J. and Majerus, P., Purification and properties of human coagulation factor VII. J. Biol. Chem., 255 (1980), 1242–1247.

    Google Scholar 

  11. Broze, G.J., Warren, L., Novotny, W., Higuchi, D., Girard, J. and Miletich, J., The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: Insight into its possible mechanism of action. Blood, 71 (1988), 335–343.

    Google Scholar 

  12. Cadroy, Y. and Hanson, S., Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model. Blood, 75 (1990), 2185–2193.

    Google Scholar 

  13. Carr, M. and Powers, P., Differential effects of divalent cations on fibrin structure. Blood Coagul. Fihrinolysis, 2 (1991), 741–747.

    Article  Google Scholar 

  14. Chien, S., Usami, S., Taylor, H., Lundberg, J. and Gregersen, M., Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol, 21 (1966), 81–87.

    Google Scholar 

  15. Cines, D., Pollak, E., Buck, C., Loscalzo, J., Zimmerman, G., McEver, R., Pober, J., Wick, T., Konkle, B., Schwartz, B., et al., Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 91 (1998), 3527–3561.

    Google Scholar 

  16. Clemetson, K., Platelet activation: Signal transduction via membrane receptors. Thromb. Haemost., 74 (1995), 111–116.

    Google Scholar 

  17. Collen, D. and Lijnen, H., Fibrin-specific fibrinolysis. Ann. N.Y. Acad. Sci., 667 (1992), 259–271.

    Article  Google Scholar 

  18. Collet, J., Shuman, H., Ledger, R., Lee, S. and Weisel, J., The elasticity of an individual fibrin fiber in a clot. Proc. Natl. Acad. Sci. USA, 102 (2005), 9133–9137.

    Article  Google Scholar 

  19. Cruz, M., Chen, J., Whitelock, J., Morales, L. and Lopez, J., The platelet glycoprotein Ib-von Willebrand factor interaction activates the collagen receptor alpha2betal to bind collagen: Activationdependent conformational change of the alpha2-I domain. Blood, 105 (2005), 1986–1991.

    Article  Google Scholar 

  20. Czapiga, M., Gao, J., Kirk, A. and Lekstrom-Himes, J., Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp. Hematol., 33 (2004), 73–84.

    Article  Google Scholar 

  21. De Marco, L., Perris, R., Cozzi, M. and Mazzucato, M., Blood clotting in space. J. Biol. Regul. Homeost. Agents, 18 (2004), 187–192.

    Google Scholar 

  22. de Vries, C., Veerman, H., Blasi, F. and Pannekoek, H., Artificial exon shuffling between tissue-type plasminogen activator (t-PA) and urokinase (u-PA): A comparative study on the fibrinolytic properties of t-PA/u-PA hybrid proteins. Biochemistry, 27 (1988), 2565–2572.

    Article  Google Scholar 

  23. Desai, U., Petitou, M., Bjork, I. and Olson, S., Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J. Biol. Chem., 273 (1998), 7478–7487.

    Article  Google Scholar 

  24. Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J., Morelli, A., Torboli, M., Bolognesi, G. and Baricordi, O., Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 97 (2001), 587–600.

    Article  Google Scholar 

  25. Diamond, S., Eskin, S. and McIntire, L., Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science, 243 (1989), 1483–1485.

    Article  Google Scholar 

  26. Do, H., Healey, J., Waller, E. and Lollar, P., Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol. Chem., 274 (1999), 19587–19592.

    Article  Google Scholar 

  27. Doerschuk, C., Downey, G., Doherty, D., English, D., Gie, R., Ohgami, M., Worthen, G., Henson, P. and Hogg, J., Leukocyte and platelet margination within microvasculature of rabbit lungs. J. Appl. Physiol, 68 (1990), 1956–1961.

    Google Scholar 

  28. Dong, J., Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J. Thromb. Haemost., 3 (2005), 1710–1716.

    Article  Google Scholar 

  29. Ernst, E., The non Newtonian properties of plasma. Haematologica, 67 (1982), 321–322.

    Google Scholar 

  30. Esmon, C., Owen, W. and Jackson, C., A plausible mechanism for prothrombin activation by factor Xa, factor Va, phospholipid, and calcium ions. J. Biol. Chem., 249 (1974), 8045–8047.

    Google Scholar 

  31. Esmon, N., Owen, W. and Esmon, C., Isolation of a membranebound cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem., 257 (1982), 859–864.

    Google Scholar 

  32. Evans, E. and La Celle, P., Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood, 45 (1975), 29–43.

    Google Scholar 

  33. Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B. and Furie, B., Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med., 8 (2002), 1175–1181.

    Article  Google Scholar 

  34. Figures, W., Scearce, L., Wachtfogel, Y., Chen, J., Colman, R. and Colman, R., Platelet ADP receptor and alpha 2-adrenoreceptor interaction. Evidence for an ADP requirement for epinephrine-induced platelet activation and an influence of epinephrine on ADP binding. J. Biol. Chem., 261 (1986), 5981–5986.

    Google Scholar 

  35. Freedman, J., Frei, B., Welch, G. and Loscalzo, J., Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J. Clin. Invest., 96 (1995), 394–400.

    Google Scholar 

  36. Furie, B. and Furie, B., Thrombus formation in vivo. J. Clin. Invest., 115 (2005), 3355–3362.

    Article  Google Scholar 

  37. Furlan, M., Von Willebrand factor: Molecular size and functional activity. Ann. Hematol., 72 (1996), 341–348.

    Article  Google Scholar 

  38. Furman, M., Gardner, T. and Goldschmidt-Clermont, P., Mechanisms of cytoskeletal reorganization during platelet activation. Thromb. Haemost., 70 (1993), 229–232.

    Google Scholar 

  39. Gambillara, V., Chambaz, C., Roy, S., Stergiopulos, N. and Silacci, P., Plaque-prone hemodynamic impairs endothelial function in pig carotid arteries. Am. J. Physiol. Heart Circ. Physiol. (2006) epub:epub.

    Google Scholar 

  40. George, J., el-Harake, M. and Raskob, G., Chronic idiopathic thrombocytopenic purpura. New Engl. J. Med., 331 (1994), 1207–1211.

    Article  Google Scholar 

  41. Gerth, C., Roberts, W. and Ferry, J., Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep. Biophys. Chem., 2 (1974), 208–217.

    Article  Google Scholar 

  42. Giddings, J., Jarvis, A. and Hogg, S., Factor V in human vascular endothelium and in endothelial cells in culture. Thromb. Res., 44 (1986), 829–835.

    Article  Google Scholar 

  43. Giraux, J., Tapon-Bretaudiere, J., Matou, S. and Fischer, A., Fucoidan, as heparin, induces tissue factor pathway inhibitor release from cultured human endothelial cells. Thromb. Haemost., 80 (1998), 692–695.

    Google Scholar 

  44. Grabowski, E. and Lam, F., Endothelial cell function, including tissue factor expression, under flow conditions. Thromb. Haemost., 74 (1995), 123–128.

    Google Scholar 

  45. Graff, J., Klinkhardt, U. and Harder, S., Pharmacodynamic profile of antiplatelet agents: Marked differences between single versus costimulation with platelet activators. Thromb. Res., 113 (2004), 295–302.

    Article  Google Scholar 

  46. Griffin, J. and Cochrane, C., Mechanisms for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor. Proc. Natl. Acad. Sci. USA, 73 (1976), 2554–2558.

    Article  Google Scholar 

  47. Hagen, I. and Solum, N., Further studies on the protein composition and surface structure of normal platelets and platelets from patients with Glanzmann’s thrombasthenia and Bernard-Soulier syndrome. Thromb. Res., 13 (1978), 845–855.

    Article  Google Scholar 

  48. Hagen, I., Brosstad, F., Gogstad, G., Korsmo, R. and Solum, N., Further studies on the interaction between thrombin and GP Ib using crossed immunoelectrophoresis. Effect of thrombin inhibitors. Thromb. Res., 27 (1982), 549–554.

    Article  Google Scholar 

  49. Hamilton, J., Nguyen, P. and Cocks, T., Atypical protease-activated receptor mediates endothelium-dependent relaxation of human coronary arteries. Circ. Res., 82 (1998), 1306–1311.

    Google Scholar 

  50. Hashimoto, S., Maeda, H. and Sasada, T., Effect of shear rate on clot growth at foreign surfaces. Artif. Organs, 9 (1985), 345–350.

    Google Scholar 

  51. Haynes, R. and Burton, A., Role of the non-Newtonian behavior of blood in hemodynamics. Am. J. Physiol, 197 (1959), 943–950.

    Google Scholar 

  52. Henderson, N. and Thurston, G., A new method for the analysis of blood and plasma coagulation. Biomed. Sci. Instrum., 29 (1993), 95–102.

    Google Scholar 

  53. Higashi, S., Matsumoto, N. and Iwanaga, S., Molecular mechanism of tissue factor-mediated acceleration of factor VIIa activity. J. Biol. Chem., 271 (1996), 26569–26574.

    Article  Google Scholar 

  54. Hojima, Y., Cochrane, C., Wiggins, R., Austen, K. and Stevens, R., In vitro activation of the contact (Hageman factor) system of plasma by heparin and chondroitin sulfate E. Blood, 63 (1984), 1453–1459.

    Google Scholar 

  55. Hollopeter, G., Jantzen, H., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R., Nurden, P., Nurden, A., Julius, D., et al., Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 409 (2001), 202–207.

    Article  Google Scholar 

  56. Hyman, A., Chapnick, B., Kadowitz, P., Lands, W., Crawford, C., Fried, J. and Barton, J., Unusual pulmonary vasodilator activity of 13,14-dehydroprostacyclin methyl ester: comparison with endoperoxides and other prostanoids. Proc. Natl. Acad. Sci. USA, 74 (1977), 5411–5415.

    Article  Google Scholar 

  57. Ignarro, L., Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol., 53 (2002), 503–514.

    Google Scholar 

  58. Investigators, T.P.T., Inhibition of platelet glycoprotein IIb/IIIa with eptiflbatide in patients with acute coronary syndromes. The PURSUIT Trial Investigators. Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy. New Engl. J. Med., 339 (1998), 436–443.

    Article  Google Scholar 

  59. Issekutz, A. and Ripley, M., The effect of intravascular neutrophil chemotactic factors on blood neutrophil and platelet kinetics. Am. J. Hematol, 21 (1986), 157–171.

    Article  Google Scholar 

  60. Janmey, P., Amis, E. and Ferry, J., Rheology of fibrin clots. VI. Stress relaxation, creep, and differential dynamic modulus of fine clots. J. Rheol., 27 (1983), 135–153.

    Article  Google Scholar 

  61. Jesty, J. and Nemerson, Y., Purification of Factor VII from bovine plasma. Reaction with tissue factor and activation of Factor X. J. Biol. Chem., 249 (1974), 509–515.

    Google Scholar 

  62. Jones, K. and Mann, K., A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J. Biol. Chem., 269 (1994), 23367–23373.

    Google Scholar 

  63. Kalafatis, M., Egan, J., van’ t Veer, C., Cawthern, K. and Mann, K., The regulation of clotting factors. Crit. Rev. Eukaryot. Gene Expr., 7 (1997), 241–280.

    Google Scholar 

  64. Kanaide, H. and Shainoff, J., Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa). J. Lab. Clin. Med., 85 (1975), 574–597.

    Google Scholar 

  65. Karino, T. and Motomiya, M., Flow through a venous valve and its implication for thrombus formation. Thromb. Res., 36 (1984), 245–257.

    Article  Google Scholar 

  66. Khirabadi, B., Foegh, M., Goldstein, H. and Ramwell, P., The effect of prednisolone, thromboxane, and platelet-activating factor receptor antagonists on lymphocyte and platelet migration in experimental cardiac transplantation. Transplantation, 43 (1987), 626–630.

    Article  Google Scholar 

  67. Kirchhofer, D., Eigenbrot, C., Lipari, M., Moran, P., Peek, M. and Kelley, R., The tissue factor region that interacts with factor Xa in the activation of factor VII. Biochemistry, 40 (2001), 675–682.

    Article  Google Scholar 

  68. Kleinstreuer, C., Hyun, S., Buchanan, J.J., Longest, P., Archie, J.J. and Truskey, G., Hemodynamic parameters and early intimai thickening in branching blood vessels. Crit. Rev. Biomed. Eng., 29 (2001), 1–64.

    Google Scholar 

  69. Ku, D., Giddens, D., Zarins, C. and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5 (1985), 293–302.

    Google Scholar 

  70. Kuharsky, A. and Fogelson, A., Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J., 80 (2001), 1050–1074.

    Google Scholar 

  71. Laki, K., The action of thrombin on fibrinogen. Science, 114 (1951), 435–436.

    Article  Google Scholar 

  72. Lawson, J. and Mann, K., Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J. Biol. Chem., 266 (1991), 11317–11327.

    Google Scholar 

  73. Lee, E. and Schiffer, C., Evidence for rapid mobilization of platelets from the spleen during intensive plateletpheresis. Am. J. Hematol., 19 (1985), 161–165.

    Article  Google Scholar 

  74. Lefkovits, J., Plow, E. and Topol, E., Platelet glycoprotein Ilb/IIIa receptors in cardiovascular medicine. New Engl. J. Med., 332 (1995), 1553–1559.

    Google Scholar 

  75. Lopes, A., Maeda, N., Aiello, V., Ebaid, M. and Bydlowski, S., Abnormal multimeric and oligomeric composition is associated with enhanced endothelial expression of von Willebrand factor in pulmonary hypertension. Chest, 104 (1993), 1455–1460.

    Article  Google Scholar 

  76. Lou, Z., Yang, W. and Stein, P., Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles. J. Biomech., 26 (1993), 383–390.

    Article  Google Scholar 

  77. Lowenhaupt, R., Silberstein, E., Sperling, M. and Mayfield, G., A quantitative method to measure human platelet chemotaxis using indium-111-oxine-labeled gel-filtered platelets. Blood, 60 (1982), 1345–1352.

    Google Scholar 

  78. Lutz, R., Cannon, J., Bischoff, K., Dedrick, R., Stiles, R. and Fry, D., Wall shear stress distribution in a model canine artery during steady flow. Circ. Res., 41 (1977), 391–399.

    Google Scholar 

  79. Maalej, N., Holden, J. and Folts, J., Effect of shear stress on acute platelet thrombus formation in canine stenosed carotid arteries: An in vivo quantitative study. J. Thromb. Thrombolysis, 5 (1998), 231–238.

    Article  Google Scholar 

  80. Mann, K., Deutsch, S., Tarbell, J., Geselowitz, D., Rosenberg, G. and Pierce, W.S., An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device. J. Biomech. Eng., 109 (1987), 139–147.

    Google Scholar 

  81. Markel, A., Manzo, R., Bergelin, R. and Strandness, D.J., Pattern and distribution of thrombi in acute venous thrombosis. Arch. Ann. 127 (1992), 305–309.

    Google Scholar 

  82. Markle, D., Evans, E. and Hochmuth, R., Force relaxation and permanent deformation of erythrocyte membrane. Biophys. J., 42 (1983), 91–98.

    Google Scholar 

  83. Mattier, L. and Bang, N., Serine protease specificity for peptide chromogenic substrates. Thromb. Haemost., 38 (1977), 776–792.

    Google Scholar 

  84. Menoud, P., Sappino, N., Boudal-Khoshbeen, M., Vassalli, J. and Sappino, A., The kidney is a major site of alpha(2)-antiplasmin production. J. Clin. Invest., 97 (1996), 2478–2484.

    Google Scholar 

  85. Merrill, E. and Pelletier, G., Viscosity of human blood: Transition from Newtonian to non-Newtonian. J. Appl. Physiol., 23 (1967), 178–182.

    Google Scholar 

  86. Merten, M., Pakala, R., Thiagarajan, P. and Benedict, C., Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation, 99 (1999), 2577–2582.

    Google Scholar 

  87. Misra, J. and Choudhury, K., Effect of initial stresses on the wave propagation in arteries. J. Math. Biol., 18 (1983), 53–67.

    MATH  Google Scholar 

  88. Mo, L., Yip, G., Cobbold, R., Gutt, C., Joy, M., Santyr, G. and Shung, K., Non-Newtonian behavior of whole blood in a large diameter tube. Biorheology, 28 (1991), 421–427.

    Google Scholar 

  89. Moore, J.J., Ku, D., Zarins, C. and Glagov, S., Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng., 114 (1992), 391–397.

    Google Scholar 

  90. Morris, C., Smith, C.N. and Blackshear, P.J., A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys. J., 52 (1987), 229–240.

    Google Scholar 

  91. Murata, T. and Secomb, T., Effects of shear rate on rouleau formation in simple shear flow. Biorheology, 25 (1988), 113–122.

    Google Scholar 

  92. Mustard, J., Perry, D., Kinlough-Rathbone, R. and Packham, M., Factors responsible for ADP-induced release reaction of human platelets. Am. J. Physiol., 228 (1975), 1757–1765.

    Google Scholar 

  93. Nachman, R. and Leung, L., Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J. Clin. Invest., 69 (1982), 263–269.

    Google Scholar 

  94. Nelb, G., Gerth, C., Ferry, J. and Lorand, L., Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated clots. Biophys. Chem., 5 (1976), 377–387.

    Article  Google Scholar 

  95. Nelb, G., Kamykowski, G. and Ferry, J., Rheology of fibrin clots. V. shear modulus, creep, and creep recovery of fine unligated clots. Biophys. Chem., 13 (1981), 15–23.

    Article  Google Scholar 

  96. Olson, S., Swanson, R., Raub-Segall, E., Bedsted, T., Sadri, M., Petitou, M., Herault, J., Herbert, J. and Bjork, I., Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems. Comparison with heparin and low-molecular-weight heparin. Thromb. Haemost., 92 (2004), 929–939.

    Google Scholar 

  97. Olson, T., Singbartl, K. and Ley, K., L-selectin is required for fMLP-but not C5a-induced margination of neutrophils in pulmonary circulation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 282 (2002), R1245–R1252.

    Google Scholar 

  98. Osterud, B., Factor VII and haemostasis. Blood Coagul. Fibrinolysis, 1 (1990), 175–181.

    Google Scholar 

  99. Osterud, B., Laake, K. and Prydz, H., The activation of human factor IX. Thromb. Diath. Haemorrh., 33 (1975), 553–563.

    Google Scholar 

  100. Parry, G. and Mackman, N., Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol, 15 (1995), 612–621.

    Google Scholar 

  101. Patel, S., Hartwig, J. and Italiano, J.J., The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Invest., 115 (2005), 3348–3354.

    Article  Google Scholar 

  102. Pieters, J., Lindhout, T. and Hemker, H., In situ-generated thrombin is the only enzyme that effectively activates factor VIII and factor V in thromboplastin-activated plasma. Blood, 74 (1989), 1021–1024.

    Google Scholar 

  103. Prosi, M., Perktold, K., Ding, Z. and Friedman, M., Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech., 37 (2004), 1767–1775.

    Article  Google Scholar 

  104. Rajagopal, K., Lefkowitz, R. and Rockman, H., When 7 transmembrane receptors are not G protein-coupled receptors. J. Clin. Invest., 115 (2005), 2971–2974.

    Article  Google Scholar 

  105. Ramaswamy, S., Vigmostad, S., Wahle, A., Lai, Y., Olszewski, M., Braddy, K., Brennan, T., Rossen, J., Sonka, M. and Chandran, K., Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J. Biomech. Eng., 128 (2006), 40–48.

    Article  Google Scholar 

  106. Rendu, F. and Brohard-Bohn, B., The platelet release reaction: Granules’ constituents, secretion and functions. Platelets, 12 (2001), 261–273.

    Article  Google Scholar 

  107. Riha, P., Wang, X., Liao, R. and Stoltz, J., Elasticity and fracture strain of whole blood clots. Clin. Hemorheol. Microcirc, 21 (1999), 45–49.

    Google Scholar 

  108. Rockman, H., Koch, W. and Lefkowitz, R. Seven-transmembranespanning receptors and heart function. Nature, 415 (2002), 206–212.

    Article  Google Scholar 

  109. Rosenberg, J., Foster, P., Kaufman, R., Vokac, E., Moussalli, M., Kroner, P. and Montgomery, R., Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J. Clin. Invest., 101 (1998), 613–624.

    Google Scholar 

  110. Ruggeri, Z., De Marco, L., Gatti, L., Bader, R. and Montgomery, R., Platelets have more than one binding site for von Willebrand factor. J. Clin. Invest., 72 (1983), 1–12.

    Google Scholar 

  111. Runyon, M., Johnson-Kerner, B. and Ismagilov, R.F., Minimal functional model of hemostasis in a biomimetic microfluidic system. Angew Chem. Int. Ed. Engl, 43 (2004), 1531–1536.

    Article  Google Scholar 

  112. Sadler, J., von Willebrand factor: Two sides of a coin. J. Thromb. Haemost., 3 (2005), 1702–1709.

    Article  Google Scholar 

  113. Sadowski, J., Esmon, C. and Suttie, J., Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J. Biol. Chem., 251 (1976), 2770–2776.

    Google Scholar 

  114. Salem, H., Broze, G., Miletich, J. and Majerus, P., Human coagulation factor Va is a cofactor for the activation of protein C. Proc. Natl. Acad. Sci. USA, 80 (1983), 1584–1588.

    Article  Google Scholar 

  115. Savi, P. and Herbert, J., Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin. Thromb. Hemost., 31 (2005), 174–183.

    Google Scholar 

  116. Schaffner, A., Augustiny, N., Otto, R. and Fehr, J., The hypersplenic spleen. A contractile reservoir of granulocytes and platelets. Arch. Int. Med., 145 (1985), 651–654.

    Article  Google Scholar 

  117. Schmid-Schonbein, G., Usami, S., Skalak, R. and Chien, S., The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res., 19 (1980), 45–70.

    Article  Google Scholar 

  118. Schmid-Schonbein, H., Gallasch, G., von Gosen, J., Volger, E. and Klose, H., Red cell aggregation in blood flow. I. New methods of quantification. Klin. Wochenschr., 54 (1976), 149–157.

    Article  Google Scholar 

  119. Schuster, J. and Nelson, P., Toll receptors: An expanding role in our understanding of human disease. J. Leukoc. Biol., 67 (2000), 767–773.

    Google Scholar 

  120. Shapira, N., Schaff, H., White, R. and Pluth, J., Hemodynamic effects of calcium chloride injection following cardiopulmonary bypass: response to bolus injection and continuous infusion. Ann. Thor. Ann., 37 (1984), 133–140.

    Article  Google Scholar 

  121. Sherry, S., Fibrinolysis. Ann. Rev. Med., 19 (1968), 247–268.

    Article  Google Scholar 

  122. Shimaoka, M. and Springer, T., Therapeutic antagonists and conformational regulation of integrin function. Nat. Rev. Drug Discov., 2 (2003), 703–716.

    Article  Google Scholar 

  123. Shulman, S., Herwig, W. and Ferry, J., The conversion of fibrinogen to fibrin. V. Influence of ionic strength and thrombin concentration on the effectiveness of certain reversible inhibitors. Arch. Biochem., 32 (1951), 354–358.

    Article  Google Scholar 

  124. Sjogren, L., Doroudi, R., Gan, L., Jungersten, L., Hrafnkelsdottir, T. and Jern, S., Elevated intraluminal pressure inhibits vascular tissue plasminogen activator secretion and downregulates its gene expression. Hypertension, 35 (2000), 1002–1008.

    Google Scholar 

  125. Sperry, J., Deming, C., Bian, C., Walinsky, P., Kass, D., Kolodgie, F., Virmani, R., Kim, A. and Rade, J., Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ. Res., 92 (2003), 41–47.

    Article  Google Scholar 

  126. Stern, D., Drillings, M., Kisiel, W., Nawroth, P., Nossel, H. and LaGamma, K., Activation of factor IX bound to cultured bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA, 81 (1984), 913–917.

    Article  Google Scholar 

  127. Telesforo, P., Semeraro, N., Verstraete, M.and Collen, D., The inhibition of plasmin by antithrombin III-heparin complex in vitro in human plasma and during streptokinase therapy in man. Thromb. Res., 7 (1975), 669–676.

    Article  Google Scholar 

  128. Thurston, G., Viscoelasticity of human blood. Biophys. J., 12 (1972), 1205–1217.

    Article  Google Scholar 

  129. Thurston, G. and Henderson, N., Impedance of a fibrin clot in a cylindrical tube: Relation to clot permeability and viscoelasticity. Biorheology, 32 (1995), 503–520.

    Article  Google Scholar 

  130. Tsai, H., Sussman, I. and Nagel, R., Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood, 83 (1994), 2171–2179.

    Google Scholar 

  131. van Dieijen, G., Tans, G., Rosing, J. and Hemker, H., The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem., 256 (1981), 3433–3442.

    Google Scholar 

  132. Virchow, R. Uber den Fasenstoff: V. phlogose und thrombose im gefabsystem. In Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Verlag v. Meidinger, Sohn and Corp., Frankfurt am Main (1856).

    Google Scholar 

  133. Wang, J. and Thampatty, B., An introductory review of cell mechanobiology. Biomech. Model Mechanobiol., 5 (2006), 1–16.

    Article  MATH  Google Scholar 

  134. Warn-Cramer, B., Almus, F. and Rapaport, S., Studies of the factor Xa-dependent inhibitor of factor Vila/tissue factor (extrinsic pathway inhibitor) from cell supernates of cultured human umbilical vein endothelial cells. Thromb. Haemost., 61 (1989), 101–105.

    Google Scholar 

  135. Wells, D., Archie, J.J. and Kleinstreuer, C., Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J. Vasc. Ann., 23 (1996), 667–678.

    Google Scholar 

  136. Wissler, R., Update on the pathogenesis of atherosclerosis. Am. J. Med., 91 (1991), 3S–9S.

    Article  Google Scholar 

  137. Wootton, D. and Ku, D., Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng., 1 (1999), 299–329.

    Article  Google Scholar 

  138. Xiao, T., Takagi, J., Coller, B., Wang, J. and Springer, T. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 432 (2004), 59–67.

    Article  Google Scholar 

  139. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 332 (1988), 411–415.

    Article  Google Scholar 

  140. Yasuda, T., Sekimoto, K., Taga, I., Funakubo, A., Fukui, Y. and Takatani, S., New method for the detection of thrombus formation in cardiovascular devices: Optical sensor evaluation in a flow chamber model. ASAIO J., 51 (2005), 110–115.

    Article  Google Scholar 

  141. Yeh, C., Wang, W., Hsieh, T. and Huang, T., Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J. Biol. Chem., 275 (2000), 18615–18618.

    Article  Google Scholar 

  142. Yeleswarapu, K., Antaki, J., Kameneva, M. and Rajagopal, K., A mathematical model for shear-induced hemolysis. Artif. Organs, 19 (1995), 576–582.

    Google Scholar 

  143. Zarins, C., Giddens, D., Bharadvaj, B., Sottiurai, V., Mabon, R. and Glagov, S., Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res., 53 (1983), 502–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Rajagopal, K., Lawson, J. (2007). Regulation of Hemostatic System Function by Biochemical and Mechanical Factors. In: Mollica, F., Preziosi, L., Rajagopal, K.R. (eds) Modeling of Biological Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4411-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4411-6_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4410-9

  • Online ISBN: 978-0-8176-4411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics