Advertisement

Regulation of Hemostatic System Function by Biochemical and Mechanical Factors

  • K. Rajagopal
  • J. Lawson
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The mammalian hemostatic system has evolved to accomplish the task of sealing defects in the cardiovascular system. Hemostasis occurs in and around a disruption in a vascular conduit through which blood normally flows, and is characterized by the localized formation of thrombus. Consequently, the process of hemostasis is influenced by: (1) the biochemical properties of the cellular and soluble components of the hemostatic system, counterregulatory networks, and the vascular conduit; (2) the local hemodynamic conditions, which regulate the influx and efflux of substrates, cofactors, and catalysts, and which also impose loads on the forming clot; and (3) the local mechanical properties of the vasculature. We review the components of the hemostatic and negative regulatory systems and their biochemical functions, and the roles that local hemodynamics play in the regulation of hemostasis

Keywords

Wall Shear Stress Tissue Factor Thrombus Formation Clot Formation Mechanical Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALa]
    Altmeppen, J., Hansen, E., Bonnlander, G., Horch, R., and Jeschke, M., Composition and characteristics of an autologous thrombocyte gel. J. Surg Res., 117 (2004), 202–207.CrossRefGoogle Scholar
  2. [AMa]
    Amin, T. and Sirs, J., The blood rheology of man and various animal species. Q. J. Exp. Physiol, 70 (1985), 37–49.Google Scholar
  3. [ANa]
    Anand, M., Rajagopal, K. and Rajagopal, K., A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med., 5 (2003).Google Scholar
  4. [BAa]
    Baer, P. and Cagen, L., Platelet activating factor vasoconstriction of dog kidney. Inhibition by alprazolam. Hypertension, 9 (1987), 253–260.Google Scholar
  5. [BEa]
    Berne, R. and Levy, M., Cardiovascular Physiology. Mosby, St. Louis (1992).Google Scholar
  6. [BJa]
    Bjork, I. and Lindahl, U., Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem., 48 (1982), 161–182.CrossRefGoogle Scholar
  7. [BOa]
    Bockenstedt, P., Greenberg, J. and Handin, R., Structural basis of von Willebrand factor binding to platelet glycoprotein Ib and collagen. Effects of disulflde reduction and limited proteolysis of polymeric von Willebrand factor. J. Clin. Invest., 77 (1986), 743–749.Google Scholar
  8. [BOb]
    Bontempo, F., Lewis, J., Gorenc, T., Spero, J., Ragni, M., Scott, J. and Starzl, T., Liver transplantation in hemophilia A. Blood, 69 (1987), 1721–1724.Google Scholar
  9. [BOc]
    Boyle Kay, M. and Fudenberg, H., Inhibition and reversal of platelet activation by cytochalasin B or colcemid. Nature, 244 (1973), 288–289.CrossRefGoogle Scholar
  10. [BRa]
    Broze, G.J. and Majerus, P., Purification and properties of human coagulation factor VII. J. Biol. Chem., 255 (1980), 1242–1247.Google Scholar
  11. [BRb]
    Broze, G.J., Warren, L., Novotny, W., Higuchi, D., Girard, J. and Miletich, J., The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: Insight into its possible mechanism of action. Blood, 71 (1988), 335–343.Google Scholar
  12. [CAa]
    Cadroy, Y. and Hanson, S., Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model. Blood, 75 (1990), 2185–2193.Google Scholar
  13. [CAb]
    Carr, M. and Powers, P., Differential effects of divalent cations on fibrin structure. Blood Coagul. Fihrinolysis, 2 (1991), 741–747.CrossRefGoogle Scholar
  14. [CHa]
    Chien, S., Usami, S., Taylor, H., Lundberg, J. and Gregersen, M., Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol, 21 (1966), 81–87.Google Scholar
  15. [CIa]
    Cines, D., Pollak, E., Buck, C., Loscalzo, J., Zimmerman, G., McEver, R., Pober, J., Wick, T., Konkle, B., Schwartz, B., et al., Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 91 (1998), 3527–3561.Google Scholar
  16. [CLa]
    Clemetson, K., Platelet activation: Signal transduction via membrane receptors. Thromb. Haemost., 74 (1995), 111–116.Google Scholar
  17. [COa]
    Collen, D. and Lijnen, H., Fibrin-specific fibrinolysis. Ann. N.Y. Acad. Sci., 667 (1992), 259–271.CrossRefGoogle Scholar
  18. [COb]
    Collet, J., Shuman, H., Ledger, R., Lee, S. and Weisel, J., The elasticity of an individual fibrin fiber in a clot. Proc. Natl. Acad. Sci. USA, 102 (2005), 9133–9137.CrossRefGoogle Scholar
  19. [CRa]
    Cruz, M., Chen, J., Whitelock, J., Morales, L. and Lopez, J., The platelet glycoprotein Ib-von Willebrand factor interaction activates the collagen receptor alpha2betal to bind collagen: Activationdependent conformational change of the alpha2-I domain. Blood, 105 (2005), 1986–1991.CrossRefGoogle Scholar
  20. [CZa]
    Czapiga, M., Gao, J., Kirk, A. and Lekstrom-Himes, J., Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp. Hematol., 33 (2004), 73–84.CrossRefGoogle Scholar
  21. [DEa]
    De Marco, L., Perris, R., Cozzi, M. and Mazzucato, M., Blood clotting in space. J. Biol. Regul. Homeost. Agents, 18 (2004), 187–192.Google Scholar
  22. [DEb]
    de Vries, C., Veerman, H., Blasi, F. and Pannekoek, H., Artificial exon shuffling between tissue-type plasminogen activator (t-PA) and urokinase (u-PA): A comparative study on the fibrinolytic properties of t-PA/u-PA hybrid proteins. Biochemistry, 27 (1988), 2565–2572.CrossRefGoogle Scholar
  23. [DEc]
    Desai, U., Petitou, M., Bjork, I. and Olson, S., Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J. Biol. Chem., 273 (1998), 7478–7487.CrossRefGoogle Scholar
  24. [DIa]
    Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J., Morelli, A., Torboli, M., Bolognesi, G. and Baricordi, O., Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 97 (2001), 587–600.CrossRefGoogle Scholar
  25. [DIb]
    Diamond, S., Eskin, S. and McIntire, L., Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science, 243 (1989), 1483–1485.CrossRefGoogle Scholar
  26. [DOa]
    Do, H., Healey, J., Waller, E. and Lollar, P., Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol. Chem., 274 (1999), 19587–19592.CrossRefGoogle Scholar
  27. [DOb]
    Doerschuk, C., Downey, G., Doherty, D., English, D., Gie, R., Ohgami, M., Worthen, G., Henson, P. and Hogg, J., Leukocyte and platelet margination within microvasculature of rabbit lungs. J. Appl. Physiol, 68 (1990), 1956–1961.Google Scholar
  28. [DOc]
    Dong, J., Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J. Thromb. Haemost., 3 (2005), 1710–1716.CrossRefGoogle Scholar
  29. [ERa]
    Ernst, E., The non Newtonian properties of plasma. Haematologica, 67 (1982), 321–322.Google Scholar
  30. [ESa]
    Esmon, C., Owen, W. and Jackson, C., A plausible mechanism for prothrombin activation by factor Xa, factor Va, phospholipid, and calcium ions. J. Biol. Chem., 249 (1974), 8045–8047.Google Scholar
  31. [ESb]
    Esmon, N., Owen, W. and Esmon, C., Isolation of a membranebound cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem., 257 (1982), 859–864.Google Scholar
  32. [EVa]
    Evans, E. and La Celle, P., Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood, 45 (1975), 29–43.Google Scholar
  33. [FAa]
    Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B. and Furie, B., Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med., 8 (2002), 1175–1181.CrossRefGoogle Scholar
  34. [FIa]
    Figures, W., Scearce, L., Wachtfogel, Y., Chen, J., Colman, R. and Colman, R., Platelet ADP receptor and alpha 2-adrenoreceptor interaction. Evidence for an ADP requirement for epinephrine-induced platelet activation and an influence of epinephrine on ADP binding. J. Biol. Chem., 261 (1986), 5981–5986.Google Scholar
  35. [FRa]
    Freedman, J., Frei, B., Welch, G. and Loscalzo, J., Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J. Clin. Invest., 96 (1995), 394–400.Google Scholar
  36. [FUa]
    Furie, B. and Furie, B., Thrombus formation in vivo. J. Clin. Invest., 115 (2005), 3355–3362.CrossRefGoogle Scholar
  37. [FUb]
    Furlan, M., Von Willebrand factor: Molecular size and functional activity. Ann. Hematol., 72 (1996), 341–348.CrossRefGoogle Scholar
  38. [FUc]
    Furman, M., Gardner, T. and Goldschmidt-Clermont, P., Mechanisms of cytoskeletal reorganization during platelet activation. Thromb. Haemost., 70 (1993), 229–232.Google Scholar
  39. [GAa]
    Gambillara, V., Chambaz, C., Roy, S., Stergiopulos, N. and Silacci, P., Plaque-prone hemodynamic impairs endothelial function in pig carotid arteries. Am. J. Physiol. Heart Circ. Physiol. (2006) epub:epub.Google Scholar
  40. [GEa]
    George, J., el-Harake, M. and Raskob, G., Chronic idiopathic thrombocytopenic purpura. New Engl. J. Med., 331 (1994), 1207–1211.CrossRefGoogle Scholar
  41. [GEb]
    Gerth, C., Roberts, W. and Ferry, J., Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep. Biophys. Chem., 2 (1974), 208–217.CrossRefGoogle Scholar
  42. [GIa]
    Giddings, J., Jarvis, A. and Hogg, S., Factor V in human vascular endothelium and in endothelial cells in culture. Thromb. Res., 44 (1986), 829–835.CrossRefGoogle Scholar
  43. [GIb]
    Giraux, J., Tapon-Bretaudiere, J., Matou, S. and Fischer, A., Fucoidan, as heparin, induces tissue factor pathway inhibitor release from cultured human endothelial cells. Thromb. Haemost., 80 (1998), 692–695.Google Scholar
  44. [GRa]
    Grabowski, E. and Lam, F., Endothelial cell function, including tissue factor expression, under flow conditions. Thromb. Haemost., 74 (1995), 123–128.Google Scholar
  45. [GRb]
    Graff, J., Klinkhardt, U. and Harder, S., Pharmacodynamic profile of antiplatelet agents: Marked differences between single versus costimulation with platelet activators. Thromb. Res., 113 (2004), 295–302.CrossRefGoogle Scholar
  46. [GRc]
    Griffin, J. and Cochrane, C., Mechanisms for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor. Proc. Natl. Acad. Sci. USA, 73 (1976), 2554–2558.CrossRefGoogle Scholar
  47. [HAa]
    Hagen, I. and Solum, N., Further studies on the protein composition and surface structure of normal platelets and platelets from patients with Glanzmann’s thrombasthenia and Bernard-Soulier syndrome. Thromb. Res., 13 (1978), 845–855.CrossRefGoogle Scholar
  48. [HAb]
    Hagen, I., Brosstad, F., Gogstad, G., Korsmo, R. and Solum, N., Further studies on the interaction between thrombin and GP Ib using crossed immunoelectrophoresis. Effect of thrombin inhibitors. Thromb. Res., 27 (1982), 549–554.CrossRefGoogle Scholar
  49. [HAc]
    Hamilton, J., Nguyen, P. and Cocks, T., Atypical protease-activated receptor mediates endothelium-dependent relaxation of human coronary arteries. Circ. Res., 82 (1998), 1306–1311.Google Scholar
  50. [HAd]
    Hashimoto, S., Maeda, H. and Sasada, T., Effect of shear rate on clot growth at foreign surfaces. Artif. Organs, 9 (1985), 345–350.Google Scholar
  51. [HAe]
    Haynes, R. and Burton, A., Role of the non-Newtonian behavior of blood in hemodynamics. Am. J. Physiol, 197 (1959), 943–950.Google Scholar
  52. [HEa]
    Henderson, N. and Thurston, G., A new method for the analysis of blood and plasma coagulation. Biomed. Sci. Instrum., 29 (1993), 95–102.Google Scholar
  53. [HIa]
    Higashi, S., Matsumoto, N. and Iwanaga, S., Molecular mechanism of tissue factor-mediated acceleration of factor VIIa activity. J. Biol. Chem., 271 (1996), 26569–26574.CrossRefGoogle Scholar
  54. [HOa]
    Hojima, Y., Cochrane, C., Wiggins, R., Austen, K. and Stevens, R., In vitro activation of the contact (Hageman factor) system of plasma by heparin and chondroitin sulfate E. Blood, 63 (1984), 1453–1459.Google Scholar
  55. [HOb]
    Hollopeter, G., Jantzen, H., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R., Nurden, P., Nurden, A., Julius, D., et al., Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 409 (2001), 202–207.CrossRefGoogle Scholar
  56. [HYa]
    Hyman, A., Chapnick, B., Kadowitz, P., Lands, W., Crawford, C., Fried, J. and Barton, J., Unusual pulmonary vasodilator activity of 13,14-dehydroprostacyclin methyl ester: comparison with endoperoxides and other prostanoids. Proc. Natl. Acad. Sci. USA, 74 (1977), 5411–5415.CrossRefGoogle Scholar
  57. [IGa]
    Ignarro, L., Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol., 53 (2002), 503–514.Google Scholar
  58. [INa]
    Investigators, T.P.T., Inhibition of platelet glycoprotein IIb/IIIa with eptiflbatide in patients with acute coronary syndromes. The PURSUIT Trial Investigators. Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy. New Engl. J. Med., 339 (1998), 436–443.CrossRefGoogle Scholar
  59. [ISa]
    Issekutz, A. and Ripley, M., The effect of intravascular neutrophil chemotactic factors on blood neutrophil and platelet kinetics. Am. J. Hematol, 21 (1986), 157–171.CrossRefGoogle Scholar
  60. [JAa]
    Janmey, P., Amis, E. and Ferry, J., Rheology of fibrin clots. VI. Stress relaxation, creep, and differential dynamic modulus of fine clots. J. Rheol., 27 (1983), 135–153.CrossRefGoogle Scholar
  61. [JEa]
    Jesty, J. and Nemerson, Y., Purification of Factor VII from bovine plasma. Reaction with tissue factor and activation of Factor X. J. Biol. Chem., 249 (1974), 509–515.Google Scholar
  62. [JOa]
    Jones, K. and Mann, K., A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J. Biol. Chem., 269 (1994), 23367–23373.Google Scholar
  63. [KAa]
    Kalafatis, M., Egan, J., van’ t Veer, C., Cawthern, K. and Mann, K., The regulation of clotting factors. Crit. Rev. Eukaryot. Gene Expr., 7 (1997), 241–280.Google Scholar
  64. [KAb]
    Kanaide, H. and Shainoff, J., Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa). J. Lab. Clin. Med., 85 (1975), 574–597.Google Scholar
  65. [KAc]
    Karino, T. and Motomiya, M., Flow through a venous valve and its implication for thrombus formation. Thromb. Res., 36 (1984), 245–257.CrossRefGoogle Scholar
  66. [KHa]
    Khirabadi, B., Foegh, M., Goldstein, H. and Ramwell, P., The effect of prednisolone, thromboxane, and platelet-activating factor receptor antagonists on lymphocyte and platelet migration in experimental cardiac transplantation. Transplantation, 43 (1987), 626–630.CrossRefGoogle Scholar
  67. [KIa]
    Kirchhofer, D., Eigenbrot, C., Lipari, M., Moran, P., Peek, M. and Kelley, R., The tissue factor region that interacts with factor Xa in the activation of factor VII. Biochemistry, 40 (2001), 675–682.CrossRefGoogle Scholar
  68. [KLa]
    Kleinstreuer, C., Hyun, S., Buchanan, J.J., Longest, P., Archie, J.J. and Truskey, G., Hemodynamic parameters and early intimai thickening in branching blood vessels. Crit. Rev. Biomed. Eng., 29 (2001), 1–64.Google Scholar
  69. [KUa]
    Ku, D., Giddens, D., Zarins, C. and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5 (1985), 293–302.Google Scholar
  70. [KUb]
    Kuharsky, A. and Fogelson, A., Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J., 80 (2001), 1050–1074.Google Scholar
  71. [LAa]
    Laki, K., The action of thrombin on fibrinogen. Science, 114 (1951), 435–436.CrossRefGoogle Scholar
  72. [LAb]
    Lawson, J. and Mann, K., Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J. Biol. Chem., 266 (1991), 11317–11327.Google Scholar
  73. [LEa]
    Lee, E. and Schiffer, C., Evidence for rapid mobilization of platelets from the spleen during intensive plateletpheresis. Am. J. Hematol., 19 (1985), 161–165.CrossRefGoogle Scholar
  74. [LEb]
    Lefkovits, J., Plow, E. and Topol, E., Platelet glycoprotein Ilb/IIIa receptors in cardiovascular medicine. New Engl. J. Med., 332 (1995), 1553–1559.Google Scholar
  75. [LOa]
    Lopes, A., Maeda, N., Aiello, V., Ebaid, M. and Bydlowski, S., Abnormal multimeric and oligomeric composition is associated with enhanced endothelial expression of von Willebrand factor in pulmonary hypertension. Chest, 104 (1993), 1455–1460.CrossRefGoogle Scholar
  76. [LOb]
    Lou, Z., Yang, W. and Stein, P., Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles. J. Biomech., 26 (1993), 383–390.CrossRefGoogle Scholar
  77. [LOc]
    Lowenhaupt, R., Silberstein, E., Sperling, M. and Mayfield, G., A quantitative method to measure human platelet chemotaxis using indium-111-oxine-labeled gel-filtered platelets. Blood, 60 (1982), 1345–1352.Google Scholar
  78. [LUa]
    Lutz, R., Cannon, J., Bischoff, K., Dedrick, R., Stiles, R. and Fry, D., Wall shear stress distribution in a model canine artery during steady flow. Circ. Res., 41 (1977), 391–399.Google Scholar
  79. [MAa]
    Maalej, N., Holden, J. and Folts, J., Effect of shear stress on acute platelet thrombus formation in canine stenosed carotid arteries: An in vivo quantitative study. J. Thromb. Thrombolysis, 5 (1998), 231–238.CrossRefGoogle Scholar
  80. [MAb]
    Mann, K., Deutsch, S., Tarbell, J., Geselowitz, D., Rosenberg, G. and Pierce, W.S., An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device. J. Biomech. Eng., 109 (1987), 139–147.Google Scholar
  81. [MAc]
    Markel, A., Manzo, R., Bergelin, R. and Strandness, D.J., Pattern and distribution of thrombi in acute venous thrombosis. Arch. Ann. 127 (1992), 305–309.Google Scholar
  82. [MAd]
    Markle, D., Evans, E. and Hochmuth, R., Force relaxation and permanent deformation of erythrocyte membrane. Biophys. J., 42 (1983), 91–98.Google Scholar
  83. [MAe]
    Mattier, L. and Bang, N., Serine protease specificity for peptide chromogenic substrates. Thromb. Haemost., 38 (1977), 776–792.Google Scholar
  84. [MEa]
    Menoud, P., Sappino, N., Boudal-Khoshbeen, M., Vassalli, J. and Sappino, A., The kidney is a major site of alpha(2)-antiplasmin production. J. Clin. Invest., 97 (1996), 2478–2484.Google Scholar
  85. [MEb]
    Merrill, E. and Pelletier, G., Viscosity of human blood: Transition from Newtonian to non-Newtonian. J. Appl. Physiol., 23 (1967), 178–182.Google Scholar
  86. [MEc]
    Merten, M., Pakala, R., Thiagarajan, P. and Benedict, C., Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation, 99 (1999), 2577–2582.Google Scholar
  87. [MIa]
    Misra, J. and Choudhury, K., Effect of initial stresses on the wave propagation in arteries. J. Math. Biol., 18 (1983), 53–67.MATHGoogle Scholar
  88. [MOa]
    Mo, L., Yip, G., Cobbold, R., Gutt, C., Joy, M., Santyr, G. and Shung, K., Non-Newtonian behavior of whole blood in a large diameter tube. Biorheology, 28 (1991), 421–427.Google Scholar
  89. [MOb]
    Moore, J.J., Ku, D., Zarins, C. and Glagov, S., Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng., 114 (1992), 391–397.Google Scholar
  90. [MOc]
    Morris, C., Smith, C.N. and Blackshear, P.J., A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys. J., 52 (1987), 229–240.Google Scholar
  91. [MUa]
    Murata, T. and Secomb, T., Effects of shear rate on rouleau formation in simple shear flow. Biorheology, 25 (1988), 113–122.Google Scholar
  92. [MUb]
    Mustard, J., Perry, D., Kinlough-Rathbone, R. and Packham, M., Factors responsible for ADP-induced release reaction of human platelets. Am. J. Physiol., 228 (1975), 1757–1765.Google Scholar
  93. [NAa]
    Nachman, R. and Leung, L., Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J. Clin. Invest., 69 (1982), 263–269.Google Scholar
  94. [NEa]
    Nelb, G., Gerth, C., Ferry, J. and Lorand, L., Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated clots. Biophys. Chem., 5 (1976), 377–387.CrossRefGoogle Scholar
  95. [NEb]
    Nelb, G., Kamykowski, G. and Ferry, J., Rheology of fibrin clots. V. shear modulus, creep, and creep recovery of fine unligated clots. Biophys. Chem., 13 (1981), 15–23.CrossRefGoogle Scholar
  96. [OLa]
    Olson, S., Swanson, R., Raub-Segall, E., Bedsted, T., Sadri, M., Petitou, M., Herault, J., Herbert, J. and Bjork, I., Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems. Comparison with heparin and low-molecular-weight heparin. Thromb. Haemost., 92 (2004), 929–939.Google Scholar
  97. [OLb]
    Olson, T., Singbartl, K. and Ley, K., L-selectin is required for fMLP-but not C5a-induced margination of neutrophils in pulmonary circulation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 282 (2002), R1245–R1252.Google Scholar
  98. [OSa]
    Osterud, B., Factor VII and haemostasis. Blood Coagul. Fibrinolysis, 1 (1990), 175–181.Google Scholar
  99. [OSb]
    Osterud, B., Laake, K. and Prydz, H., The activation of human factor IX. Thromb. Diath. Haemorrh., 33 (1975), 553–563.Google Scholar
  100. [PAa]
    Parry, G. and Mackman, N., Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol, 15 (1995), 612–621.Google Scholar
  101. [PAb]
    Patel, S., Hartwig, J. and Italiano, J.J., The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Invest., 115 (2005), 3348–3354.CrossRefGoogle Scholar
  102. [PIa]
    Pieters, J., Lindhout, T. and Hemker, H., In situ-generated thrombin is the only enzyme that effectively activates factor VIII and factor V in thromboplastin-activated plasma. Blood, 74 (1989), 1021–1024.Google Scholar
  103. [PRa]
    Prosi, M., Perktold, K., Ding, Z. and Friedman, M., Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech., 37 (2004), 1767–1775.CrossRefGoogle Scholar
  104. [RAa]
    Rajagopal, K., Lefkowitz, R. and Rockman, H., When 7 transmembrane receptors are not G protein-coupled receptors. J. Clin. Invest., 115 (2005), 2971–2974.CrossRefGoogle Scholar
  105. [RAb]
    Ramaswamy, S., Vigmostad, S., Wahle, A., Lai, Y., Olszewski, M., Braddy, K., Brennan, T., Rossen, J., Sonka, M. and Chandran, K., Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J. Biomech. Eng., 128 (2006), 40–48.CrossRefGoogle Scholar
  106. [REa]
    Rendu, F. and Brohard-Bohn, B., The platelet release reaction: Granules’ constituents, secretion and functions. Platelets, 12 (2001), 261–273.CrossRefGoogle Scholar
  107. [RIa]
    Riha, P., Wang, X., Liao, R. and Stoltz, J., Elasticity and fracture strain of whole blood clots. Clin. Hemorheol. Microcirc, 21 (1999), 45–49.Google Scholar
  108. [ROa]
    Rockman, H., Koch, W. and Lefkowitz, R. Seven-transmembranespanning receptors and heart function. Nature, 415 (2002), 206–212.CrossRefGoogle Scholar
  109. [ROb]
    Rosenberg, J., Foster, P., Kaufman, R., Vokac, E., Moussalli, M., Kroner, P. and Montgomery, R., Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J. Clin. Invest., 101 (1998), 613–624.Google Scholar
  110. [RUa]
    Ruggeri, Z., De Marco, L., Gatti, L., Bader, R. and Montgomery, R., Platelets have more than one binding site for von Willebrand factor. J. Clin. Invest., 72 (1983), 1–12.Google Scholar
  111. [RUb]
    Runyon, M., Johnson-Kerner, B. and Ismagilov, R.F., Minimal functional model of hemostasis in a biomimetic microfluidic system. Angew Chem. Int. Ed. Engl, 43 (2004), 1531–1536.CrossRefGoogle Scholar
  112. [SAa]
    Sadler, J., von Willebrand factor: Two sides of a coin. J. Thromb. Haemost., 3 (2005), 1702–1709.CrossRefGoogle Scholar
  113. [SAb]
    Sadowski, J., Esmon, C. and Suttie, J., Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J. Biol. Chem., 251 (1976), 2770–2776.Google Scholar
  114. [SAc]
    Salem, H., Broze, G., Miletich, J. and Majerus, P., Human coagulation factor Va is a cofactor for the activation of protein C. Proc. Natl. Acad. Sci. USA, 80 (1983), 1584–1588.CrossRefGoogle Scholar
  115. [SAd]
    Savi, P. and Herbert, J., Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin. Thromb. Hemost., 31 (2005), 174–183.Google Scholar
  116. [SCa]
    Schaffner, A., Augustiny, N., Otto, R. and Fehr, J., The hypersplenic spleen. A contractile reservoir of granulocytes and platelets. Arch. Int. Med., 145 (1985), 651–654.CrossRefGoogle Scholar
  117. [SCb]
    Schmid-Schonbein, G., Usami, S., Skalak, R. and Chien, S., The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res., 19 (1980), 45–70.CrossRefGoogle Scholar
  118. [SCc]
    Schmid-Schonbein, H., Gallasch, G., von Gosen, J., Volger, E. and Klose, H., Red cell aggregation in blood flow. I. New methods of quantification. Klin. Wochenschr., 54 (1976), 149–157.CrossRefGoogle Scholar
  119. [SCd]
    Schuster, J. and Nelson, P., Toll receptors: An expanding role in our understanding of human disease. J. Leukoc. Biol., 67 (2000), 767–773.Google Scholar
  120. [SHa]
    Shapira, N., Schaff, H., White, R. and Pluth, J., Hemodynamic effects of calcium chloride injection following cardiopulmonary bypass: response to bolus injection and continuous infusion. Ann. Thor. Ann., 37 (1984), 133–140.CrossRefGoogle Scholar
  121. [SHb]
    Sherry, S., Fibrinolysis. Ann. Rev. Med., 19 (1968), 247–268.CrossRefGoogle Scholar
  122. [SHc]
    Shimaoka, M. and Springer, T., Therapeutic antagonists and conformational regulation of integrin function. Nat. Rev. Drug Discov., 2 (2003), 703–716.CrossRefGoogle Scholar
  123. [SHd]
    Shulman, S., Herwig, W. and Ferry, J., The conversion of fibrinogen to fibrin. V. Influence of ionic strength and thrombin concentration on the effectiveness of certain reversible inhibitors. Arch. Biochem., 32 (1951), 354–358.CrossRefGoogle Scholar
  124. [SJa]
    Sjogren, L., Doroudi, R., Gan, L., Jungersten, L., Hrafnkelsdottir, T. and Jern, S., Elevated intraluminal pressure inhibits vascular tissue plasminogen activator secretion and downregulates its gene expression. Hypertension, 35 (2000), 1002–1008.Google Scholar
  125. [SPa]
    Sperry, J., Deming, C., Bian, C., Walinsky, P., Kass, D., Kolodgie, F., Virmani, R., Kim, A. and Rade, J., Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ. Res., 92 (2003), 41–47.CrossRefGoogle Scholar
  126. [STa]
    Stern, D., Drillings, M., Kisiel, W., Nawroth, P., Nossel, H. and LaGamma, K., Activation of factor IX bound to cultured bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA, 81 (1984), 913–917.CrossRefGoogle Scholar
  127. [TEa]
    Telesforo, P., Semeraro, N., Verstraete, M.and Collen, D., The inhibition of plasmin by antithrombin III-heparin complex in vitro in human plasma and during streptokinase therapy in man. Thromb. Res., 7 (1975), 669–676.CrossRefGoogle Scholar
  128. [THa]
    Thurston, G., Viscoelasticity of human blood. Biophys. J., 12 (1972), 1205–1217.CrossRefGoogle Scholar
  129. [THb]
    Thurston, G. and Henderson, N., Impedance of a fibrin clot in a cylindrical tube: Relation to clot permeability and viscoelasticity. Biorheology, 32 (1995), 503–520.CrossRefGoogle Scholar
  130. [TSa]
    Tsai, H., Sussman, I. and Nagel, R., Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood, 83 (1994), 2171–2179.Google Scholar
  131. [VAa]
    van Dieijen, G., Tans, G., Rosing, J. and Hemker, H., The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem., 256 (1981), 3433–3442.Google Scholar
  132. [VIa]
    Virchow, R. Uber den Fasenstoff: V. phlogose und thrombose im gefabsystem. In Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Verlag v. Meidinger, Sohn and Corp., Frankfurt am Main (1856).Google Scholar
  133. [WAa]
    Wang, J. and Thampatty, B., An introductory review of cell mechanobiology. Biomech. Model Mechanobiol., 5 (2006), 1–16.MATHCrossRefGoogle Scholar
  134. [WAb]
    Warn-Cramer, B., Almus, F. and Rapaport, S., Studies of the factor Xa-dependent inhibitor of factor Vila/tissue factor (extrinsic pathway inhibitor) from cell supernates of cultured human umbilical vein endothelial cells. Thromb. Haemost., 61 (1989), 101–105.Google Scholar
  135. [WEa]
    Wells, D., Archie, J.J. and Kleinstreuer, C., Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J. Vasc. Ann., 23 (1996), 667–678.Google Scholar
  136. [WIa]
    Wissler, R., Update on the pathogenesis of atherosclerosis. Am. J. Med., 91 (1991), 3S–9S.CrossRefGoogle Scholar
  137. [WOa]
    Wootton, D. and Ku, D., Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng., 1 (1999), 299–329.CrossRefGoogle Scholar
  138. [XIa]
    Xiao, T., Takagi, J., Coller, B., Wang, J. and Springer, T. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 432 (2004), 59–67.CrossRefGoogle Scholar
  139. [YAa]
    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 332 (1988), 411–415.CrossRefGoogle Scholar
  140. [YAb]
    Yasuda, T., Sekimoto, K., Taga, I., Funakubo, A., Fukui, Y. and Takatani, S., New method for the detection of thrombus formation in cardiovascular devices: Optical sensor evaluation in a flow chamber model. ASAIO J., 51 (2005), 110–115.CrossRefGoogle Scholar
  141. [YEa]
    Yeh, C., Wang, W., Hsieh, T. and Huang, T., Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J. Biol. Chem., 275 (2000), 18615–18618.CrossRefGoogle Scholar
  142. [YEb]
    Yeleswarapu, K., Antaki, J., Kameneva, M. and Rajagopal, K., A mathematical model for shear-induced hemolysis. Artif. Organs, 19 (1995), 576–582.Google Scholar
  143. [ZAa]
    Zarins, C., Giddens, D., Bharadvaj, B., Sottiurai, V., Mabon, R. and Glagov, S., Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res., 53 (1983), 502–514.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • K. Rajagopal
    • 1
  • J. Lawson
    • 1
  1. 1.Department of SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations