Biochemical and Biomechanical Aspects of Blood Flow

  • M. Thiriet
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The blood vital functions are adaptative and strongly regulated. The various processes associated with the flowing blood involve multiple space and time scales. Biochemical and biomechanical aspects of the human blood circulation are indeed strongly coupled. The functioning of the heart, the transduction of mechanical stresses applied by the flowing blood on the endothelial and smooth muscle cells of the vessel wall, gives examples of the links between biochemistry and biomechanics in the physiology of the cardiovascular system and its regulation. The remodeling of the vessel of any site of the vasculature (blood vessels, heart) when the blood pressure increases, the angiogenesis, which occurs in tumors or which shunts a stenosed artery, illustrates pathophysiological processes. Moreover, focal wall pathologies, with the dysfunction of its biochemical machinery, such as lumen dilations (aneurisms) or narrowings (stenoses), are stress-dependent. This review is aimed at emphasizing the multidisciplinary aspects of investigations of multiple aspects of the blood flow


Nitric Oxide Wall Shear Stress Focal Adhesion Kinase Biological Material Atrial Natriuretic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAa]
    Aaron, B.B. and Gosline, J.M., Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers, Biopolymers, 20 (1981), 1247–1260.Google Scholar
  2. [ALa]
    Aliev, R.R. and Panfilov, A.V., A simple two-variable model of cardiac excitation, Chaos Solitons Fractals, 7 (1996), 293–301.Google Scholar
  3. [AMa]
    Ambrosi, D., Bussolino, F., Preziosi, L., A review of vasculogenesis models Journal of Theoretical Medicine, 6 (2005), 1–19.MATHMathSciNetGoogle Scholar
  4. [ANa]
    Anand, M. and Rajagopal, K.R., A mathematical model to describe the change in the constitutive character of blood due to platelet activation, C.R. Acad. Sci. Paris, Mécanique, 330 (2002), 557–562.Google Scholar
  5. [AUa]
    Aumailley, M. and Gayraud, B., Structure and biological activity of the extracellular matrix, J. Mol. Med., 76 (1998), 253–265.Google Scholar
  6. [AZa]
    Azhari, H., Weiss, J.L., Rogers, W.J., Siu, C.O., Zerhouni, E.A., and Shapiro, E.P., Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D, Am. J. Physiol., 264 (1993), H205–H216.Google Scholar
  7. [BAa]
    Bao, X., Lu, C., and Frangos, J.A., Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells, Am. J. Physiol., Heart Circ. Physiol., 281 (2001), H22–H29.Google Scholar
  8. [BEa]
    Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., and Anversa, P., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, 114 (2003), 763–776.Google Scholar
  9. [BEb]
    Bestel, J., Clément, F., and Sorine, M., A biomechanical model of muscle contraction, In Medical Image Computing and Computer-Assisted Intervention (MICCAI’01), Lectures Notes in Computer Science, Niessen, W.J., and Viergever, M.A. eds, Springer-Verlag, New York (2001), 2208, pp. 1159–1161.Google Scholar
  10. [BIa]
    Binning, G., Quate, C.F., and Gerber, C., Atomic force microscope, Phys. Rev. Lett., 56 (1986), 930–933.Google Scholar
  11. [BOa]
    Bogaert, J. and Rademakers, F.E., Regional nonuniformity of normal adult human left ventricle, Am. J. Physiol, Heart Circ. Physiol, 280 (2001), H610–H620.Google Scholar
  12. [BOb]
    Boissonnat, J.D., Chaine, R., Frey, P., Malandain, G., Salmon, S., Saltel, E., and Thiriet, M., From arteriographies to computational flow in saccular aneurisms: The INRIA experience, Med. Image Anal., 9 (2005), 133–143.Google Scholar
  13. [BOc]
    Bos, J.L., de Rooij, J., and Reedquist, K.A., Rap1 signalling: Adhering to new models. Nat. Rev. Mol. Cell. Biol., 2 (2001), 369–377.Google Scholar
  14. [BOd]
    Bourdarias, C., Gerbi, S., and Ohayon, J., A three dimensional finite element method for biological active soft tissue, Math. Model. Numer. Anal., 37 (2003), 725–739.MATHMathSciNetGoogle Scholar
  15. [BOe]
    Bourgault, Y., Ethier, M., and LeBlanc, V.G., Simulation of electrophysiological waves with an unstructured finite element method, Math. Model. Numer. Anal., 37 (2003), 649–661.MATHMathSciNetGoogle Scholar
  16. [BOf]
    Boyanovsky, B., Karakashian, A., King, K., Giltyay, N.V., and Nikolova-Karakashian, M., Ceramide-enriched low-density lipoproteins induce apoptosis in human microvascular endothelial cells, J. Biol. Chem., 278 (2003), 26992–26999.Google Scholar
  17. [BRa]
    Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, MW., and Sheu, SS. Calcium, ATP, and ROS: A mitochondrial love-hate triangle, Am. J. Physiol., Cell Physiol., 287 (2004), C817–C833.Google Scholar
  18. [CAa]
    Caille, N., Thoumine, O., Tardy, Y., and Meister, J.J., Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech., 35 (2002), 177–187.Google Scholar
  19. [CAb]
    Caillerie, D., Mourad, A., and Raoult, A., Cell-to-muscle homogenization. Application to a constitutive law for the myocardium, Math. Model. Numer. Anal., 37 (2003), 681–698.MATHMathSciNetGoogle Scholar
  20. [CAc]
    Cairns, C.B., Walther, J., Harken, A.H., and Banerjee, A., Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles, Am. J. Physiol., Regul. Integr. Comp. Physiol., 274 (1998), R1376–R1383.Google Scholar
  21. [CAd]
    Canfield, T.R. and Dobrin, P.B., Static elastic properties of blood vessels, In: Handbook of Bioengineering, Skalak, R. and Chien, S. Eds., McGraw-Hill, New-York (1987), pp. 16.1–16.28.Google Scholar
  22. [CAe]
    Carnegie, G.K. and Scott, J.D., A-kinase anchoring proteins and neuronal signaling mechanisms, Genes Dev., 17 (2003), 1557–1568.Google Scholar
  23. [CAf]
    Caro, C.G., Fitzgerald, J.M., and Schroter, R.C., Atherosclerosis and arterial wall shear: observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. Royal Soc. London B, 177 (1971), 109–159.Google Scholar
  24. [CHa]
    Chang, L., and Karin, M., Mammalian MAP kinase signalling cascades, Nature, 410 (2001), 37–40.Google Scholar
  25. [CHb]
    Chapelle, D., Clément, F., Génot, F., Le Tallec, P., Sorine, M., and Urquiza, J., A physiologically-based model for the active cardiac muscle, Lectures Notes in Computer Science, Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., and Nenonen, J. Eds, Springer-Verlag New York (2001), pp. 2230Google Scholar
  26. [CHc]
    Chien, S., Shear dependence of effective cell volume as a determinant of blood viscosity, Science, 168 (1970), 977–978.Google Scholar
  27. [CIa]
    Cimrman, R. and Rohan, E., Modelling heart tissue using a composite muscle model with blood perfusion, in: Computational Fluid and Solid Mechanics, Bathe, K.J., Ed., Elsevier (2003).Google Scholar
  28. [CIb]
    Civelekoglu, G. and Edelstein-Keshet, L., Modelling the dynamics of F-actin in the cell, Bull. Math. Biol., 56 (1994), 587–616.MATHGoogle Scholar
  29. [CLa]
    Clark, E.A. and Brugge, J.S., Integrins and signal transduction pathways: The road taken, Science, 268 (1995), 233–239.Google Scholar
  30. [CLb]
    Clark, R.A., Wikner, N.E., Doherty, D.E., and Norris, D.A., Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment, J. Biol. Chem., 263 (1988), 12115–12123.Google Scholar
  31. [COa]
    Colli-Franzone, P., Guerri, L., and Tentoni, S., Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on the wavefront propagation and potential field, Math. Biosci., 101 (1990), 155–235.MATHGoogle Scholar
  32. [DAa]
    Davis, M.J., Kuo, L., Chilian, W.M., and Muller, J.M., Isolated, perfused microvessels, In Clinically Applied Microcirculation Research, Barker, J.H., Anderson, G.L. and Menger, M.D. eds, CRC, Boca Raton, 1995, pp. 435–456.Google Scholar
  33. [DEa]
    de Bold AJ., Atrial natriuretic factor: A hormone produced by the heart. Science, 230 (1985), 767–770.Google Scholar
  34. [DEb]
    de Brabander, M.J., Le cytosquelette et la vie cellulaire, La Recherche, 145 (1993), 810–820.Google Scholar
  35. [DEc]
    Delhaas, T., Arts, T., Prinzen, F.W., and Reneman, R.S., Relation between regional electrical activation time and subepicardial fiber strain in the canine left ventricle, Pflugers Arch., 423 (1993), 78–87.Google Scholar
  36. [DEd]
    Dembo, M., The mechanics of motility in dissociated cytoplasm. Biophys. J., 50 (1986), 1165–1183.Google Scholar
  37. [DEe]
    Dewey, C.F., Bussolari, S.R., Gimbrone, M.A., and Davies, P.F., The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomech. Eng., 103 (1981), 177–185.Google Scholar
  38. [DIa]
    Di Martino, E.S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., and Redaelli, A., Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm, Med. Eng. Phys., 23 (2001), 647–655.Google Scholar
  39. [DRa]
    Draney, M.T., Herfkens, R.J., Hughes, T.J., Pelc, N.J., Wedding, K.L., Zarins, C.K., and Taylor, C.A., Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging, Ann. Biomed. Eng., 30 (2002), 1033–1045.Google Scholar
  40. [DUa]
    Duling, B.R., Gore, R.W., Dacey, R. G., and Damon, D.N., Methods for isolation, cannulation, and in vitro study of single microvessels, Am. J. Physiol., Beart Circ. Physiol, 241 (1981), H108–H116.Google Scholar
  41. [DUb]
    Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., and Arzbaecher, R.C., Total excitation of the isolated human heart, Circulation, 41 (1970), 899–912.Google Scholar
  42. [EVa]
    Evans, E.A., New membrane concept applied to the analysis of fluid shear-and micropipette-deformed red blood cells, Biophys. J., 13 (1973), 941–954.Google Scholar
  43. [FAa]
    Fahraeus, R. and Lindqvist, T., The viscosity of the blood in narrow capillary tubes. Am. J. Physiol., 96 (1931), 562–568.Google Scholar
  44. [FAb]
    Faris, O.P., Evans, F.J., Ennis, D.B., Helm, P.A., Taylor, J.L., Chesnick, A.S., Guttman, M.A., Ozturk, C., and McVeigh, E.R., Novel technique for cardiac electromechanical mapping with magnetic resonance imaging tagging and an epicardial electrode sock, Ann. Biomed. Eng., 31 (2003), 430–440.Google Scholar
  45. [FIa]
    FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466.Google Scholar
  46. [FOa]
    Fogel, M.A., Weinberg, P.M., Hubbard, A., and Haselgrove, J., Diastolic biomechanics in normal infants utilizing MRI tissue tagging, Circulation, 102 (2000), 218–224.Google Scholar
  47. [FOb]
    Fogelson, A.L. and Guy, R.D., Platelet-wall interactions in continuum models of platelet thrombosis: Formulation and numerical solution, Math. Med. Biol., 21 (2004), 293–334.MATHGoogle Scholar
  48. [FUa]
    Fung, Y.C., Biomechanics, Springer-Verlag, New York (1981).Google Scholar
  49. [FUb]
    Fung, Y.C., Biomechanics: Mechanical Properties of Living Tissues Springer-Verlag, New York (1993).Google Scholar
  50. [GEa]
    Geselowitz, D.B. and Miller, W.T., A bidomain model for anisotropic cardiac muscle, Ann. Biomed. Eng., 11 (1983), 191–206.Google Scholar
  51. [GIa]
    Giancotti, F.G. and Ruoslahti, E., Integrin signaling, Science, 285 (1999), 1028–1032.Google Scholar
  52. [GLa]
    Gleason, R.L. and Humphrey, J.D., A mixture model of arterial growth and remodeling in hypertension: Altered muscle tone and tissue turnover, J. Vasc. Res., 41 (2004), 352–363.Google Scholar
  53. [GLb]
    Gleason, R.L. and Humphrey, J.D., Effects of a sustained extension on arterial growth and remodeling: A theoretical study, J. Biomech., 38 (2005), 1255–1261.Google Scholar
  54. [GLc]
    Glover, D.M., Gonzalez, C., and Raff, J.W., The centrosome, Sci. Amer., 268 (1993), 62–68.Google Scholar
  55. [GOa]
    Gohring, W., Sasaki, T., Heldin, C.H., and Timpl, R., Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope, Eur. J. Biochem., 255 (1998), 60–66.Google Scholar
  56. [HAa]
    Hayashi, K., Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls, J. Biomech. Eng., 115 (1993), 481–488.Google Scholar
  57. [HEa]
    He, C.M. and Roach, M.R., The composition and mechanical properties of abdominal aortic aneurysms, J. Vasc. Surg., 20 (1994), 6–13.Google Scholar
  58. [HEb]
    Heeschen, C., Lehmann, R., Honold, J., Assmus, B., Aicher, A., Walter, D.H., Martin, H., Zeiher, A.M., and Dimmeier, S., Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemie heart disease, Circulation, 109 (2004), 1615–1622.Google Scholar
  59. [HEc]
    Heethaar, R.M, Pao, Y.C., and Ritman, E.L., Computer aspects of three-dimensional finite element analysis of stresses and strains in the intact heart, Comput. Biomed. Res., 10 (1977), 271–285.Google Scholar
  60. [HEd]
    Hénon, S., Lenormand, G., Richert, A., and Gallet, F., A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J., 76 (1999), 1145–1151.Google Scholar
  61. [HEe]
    Heusch, G., Post, H., Michel, M.C., Kelm, M., and Schulz, R., Endogenous nitric oxide and myocardial adaptation to ischemia, Circ. Res., 87 (2000), 146–152.Google Scholar
  62. [HIa]
    Hill, J.M., Zalos, G., Halcox, J.P.J., Schenke, W.H., Waclawiw, M.A., Quyyumi, A.A., and Finkel, T., Circulating endothelial progenitor cells, vascular function, and cardiovascular risk, N. Engl. J. Med. 348 (2003), 593–600.Google Scholar
  63. [HOa]
    Hochmuth, R.M., Micropipette aspiration of living cells, J. Biomech., 33 (2000), 15–22.Google Scholar
  64. [HOb]
    Holzapfel, G.A. and Gasser, T.C., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 61 (2000), 1–48.MATHMathSciNetGoogle Scholar
  65. [HSa]
    Hsu, E.W. and Henriquez, C.S., Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging, J. Cardiovasc. Magn. Reson., 3 (2001), 339–347.Google Scholar
  66. [HUa]
    Humphrey, J.D. and Rajagopal, K.R., A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Meth. Appl. Sci., 12 (2002), 407–430.MATHMathSciNetGoogle Scholar
  67. [HUb]
    Humphrey, J.D., Continuum biomechanics of soft biological tissues, Proc. R. Soc. Lond. A, 459 (2003), 3–46.MATHMathSciNetGoogle Scholar
  68. [HUc]
    Hunter, P.J., McCulloch, A.D., and ter Keurs, H.E., Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol., 69 (1998), 289–331.Google Scholar
  69. [HUd]
    Huxley, A.F., Muscle structure and theories of contraction, Prog. Biophys. Chem., 7 (1957), 255–318.Google Scholar
  70. [HUe]
    Huyghe, J.M., Arts, T., and van Campen, D.H., Porous medium finite element model of the beating left ventricle. Am. J. Physiol., 262 (1992), H1256–H1267.Google Scholar
  71. [HYa]
    Hynes, R.O., Fibronectins, Sci. Am., 254 (1986), 42–51.Google Scholar
  72. [INa]
    Ingber, D.E., Madri, J.A., and Jamieson, J.D., Role of basal lamina in neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. USA, 78 (1981), 3901–3905.Google Scholar
  73. [IRa]
    Irizarry, E., Newman, K.M., Gandhi, R.H., Nackman, G.B., Halpern, V., Wishner, S., Scholes, J.V., and Tilson, M.D., Demonstration of interstitial collagenase in abdominal aortic aneurysm disease, J. Surg. Res., 54 (1993), 571–574.Google Scholar
  74. [ITa]
    Ito, H., Hirata, Y., Hiroe, M., Tsujino, M., Adachi, S., Takamoto, T., Nitta, M., Taniguchi, K., and Marumo, F., Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes, Circ. Res., 69 (1991), 209–215.Google Scholar
  75. [JEa]
    Jennings, L.M., Butterfield, M., Booth, C., Watterson K.G., and Fisher, J., The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement. J. Heart Valve Dis., 11 (2002), 668–678.Google Scholar
  76. [JOa]
    Johnson, P.C., The myogenic response, In Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle, sect. 2, vol. II, chapt. 15, Am. Physiol. Soc., Bethesda, MD, (1981), pp. 409–442.Google Scholar
  77. [JOb]
    Joly, M., Lacombe, C., and Quemada, D., Application of the transient flow rheology to the study of abnormal human bloods, Biorheology, 18 (1981), 445–452.Google Scholar
  78. [KAa]
    Katusic, Z.S., Superoxide anion and endothelial regulation of arterial tone, Free Radic. Biol. Med., 20 (1996), 443–448.Google Scholar
  79. [KEa]
    Keller, E.F. and Segel, L.A., Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234.Google Scholar
  80. [KEb]
    Kermorgant, S., Zicha, D., and Parker, P.J., PKC controls HGF-dependent c-Met traffic, signalling and cell migration, EMBO J., 23 (2004), 3721–3734.Google Scholar
  81. [KIa]
    Kirkham, M., Fujita, A., Chadda, R., Nixon, S.J., Kurzchalia, T.V., Sharma, D.K., Pagano, R.E., Hancock, J.F., Mayor, S., Parton, R.G., and Richards, A.A., Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles, J. Cell Biol., 168 (2005), 465–476.Google Scholar
  82. [KUa]
    Kuharsky, A.L. and Fogelson, A.L., Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition, Biophys. J., 80 (2001), 1050–1074.Google Scholar
  83. [LAa]
    Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., Platoshyn, O., Yuan, J.X., Evans, S., and Chien, K.R., Postnatal isll+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature, 433 (2005), 647–653.Google Scholar
  84. [LAb]
    Laurent, V., Planus, E., Isabey, D., Lacombe, C., and Bucherer, C., Propriétés mécaniques de cellules endothéliales évaluées par micromanipulation cellulaire et magnétocytométrie, MecanoTransduction 2000, Ribreau, C. et al. Eds., Tec&Doc, Paris (2000), pp. 373–380.Google Scholar
  85. [LEa]
    Le, P.U. and Nabi, I.R., Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum, J. Cell Sci., 116 (2003), 1059–1071.Google Scholar
  86. [LEb]
    le Noble, F., Moyon, D., Pardanaud, L., Yuan, L., Djonov, V., Matthijsen, R., Breant, C., Fleury, V., and Eichmann, A., Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development, 131 (2004), 361–375.Google Scholar
  87. [MAa]
    Manoussaki, D., A mechanochemical model of angiogenesis and vasculogenesis, Math. Model. Numer. Anal., 37 (2003), 581–599.MATHMathSciNetGoogle Scholar
  88. [MAb]
    Marrocco, A., Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, Math. Model. Numer. Anal., 37 (2003), 617–630.MATHMathSciNetGoogle Scholar
  89. [MEa]
    Meili, R., Sasaki, A.T., and Firtel, R.A., Rho Rocks PTEN, Nature Cell Biology, 7 (2005), 334–335.Google Scholar
  90. [MEb]
    Meininger, G.A. and Davis, M.J., Cellular mechanisms involved in the vascular myogenic response, Am. J. PhysioL, Heart Circ. Physiol., 263 (1992), H647–H659.Google Scholar
  91. [MIa]
    Michel, C.C. and Curry, F.E., Microvascular permeability, Physiol. Rev., 79 (1999), 703–761.Google Scholar
  92. [MOa]
    Morawietz, H., Talanow, R., Szibor, M., Rueckschloss, U., Schubert, A., Bartling, B., Darmer, D., and Holtz, J., Regulation of the endothelin system by shear stress in human endothelial cells. J. Physiol., 525 (2000), 761–770.Google Scholar
  93. [MUa]
    Murray, C.D., The physiological principle of minimum work. I. The vascular system and the cost of blood volume, Proc. Nat. Acad. Sci. (USA), 12 (1926), 207–214.Google Scholar
  94. [MUb]
    Murray, J., Osher, G., and Harris, A., A mechanical model for mesenchymal morphogenesis, J. Math. Biol., 17 (1983), 125–129.MATHGoogle Scholar
  95. [MUc]
    Murray, J.D., Mathematical Biology, Springer-Verlag, New York (2002).MATHGoogle Scholar
  96. [NAa]
    Nagumo, J., Arimoto, S., and Yoshizawa, S., An active pulse transmission line simulating nerve axons, Proc. IRE, 50 (1962), 2061–2070.Google Scholar
  97. [NOa]
    Nobes, C.D. and Hall, A., Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81 (1995), 53–62.Google Scholar
  98. [NOb]
    Nollert, M.U., Eskin, S.G., and McIntire, L.V., Shear stress increases inositol trisphosphate levels in human endothelial cells, Biochem. Biophys. Res. Commun., 170 (1990), 281–287.Google Scholar
  99. [NOc]
    Nollert, M.U., Diamond, S.L., and Mclntire, L.V., Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism, Biotechnol. Bioeng., 38 (1991), 588–602.Google Scholar
  100. [ODa]
    Oddou, C and Ohayon, J., Mécanique de la structure cardiaque, In Biomécanique des fluides et des tissus, Jaffrin, M.Y., and Goubel, F. Eds., Masson, Paris (1998), pp. 247–292.Google Scholar
  101. [OZa]
    Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.R., Zhang, Y., and Wrana, J.L., Regulation of the polarity protein Par6 by TGF-beta receptors controls epithelial cell plasticity. Science, 307 (2005), 1603–1609.Google Scholar
  102. [PAa]
    Pavalko, F.M. and Otey, C.A., Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton, Proc. Soc. Exp. Biol. Med., 205 (1994), 282–293.Google Scholar
  103. [PEa]
    Peskin, C.S., Fiber architecture of the left ventricular wall: An asymptotic analysis, Commun. Pure Appl. Math., 42 (1989), 79–113.MATHMathSciNetGoogle Scholar
  104. [PEb]
    Peskin, C.S. and McQueen, D.M., Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol., 266 (1994), H319–H328.Google Scholar
  105. [PIa]
    Pieske, B., Beyermann, B., Breu, V., Loffler, B.M., Schlotthauer, K., Maier, L.S., Schmidt-Schweda, S., Just, H., and Hasenfuss, G., Functional effects of endothelin and regulation of endothelin receptors in isolated human nonfailing and failing myocardium, Circulation, 99 (1999), 1802–1809.Google Scholar
  106. [PIb]
    Pioletti, D.P. and Rakotomanana, L.R., Non-linear viscoelastic laws for soft biological tissues, Fur. J. Mech. A/Solids, 19 (2000), 749–759.MATHGoogle Scholar
  107. [POa]
    Pohl, U. and Busse, R., Hypoxia stimulates release of endotheliumderived relaxant factor, Am. J. Physiol., 256 (1989), H1595–H1600.Google Scholar
  108. [POb]
    Poon, C.S. and Merrill, C.K., Decrease of cardiac chaos in congestive heart failure, Nature, 389 (1997), 492–495.Google Scholar
  109. [RAa]
    Rabiet, M.J., Plantier, J.L., Rival, Y., Genoux, Y., Lampugnani, M.G., and Dejana, E., Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization, Arterioscler. Thromb. Vasc. Biol., 16 (1996), 488–496.Google Scholar
  110. [RAb]
    Raghavan, M.L., Vorp, D.A., Federle, M.P., Makaroun, M.S., and Webster, M.W., Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm, J. Vascular Surgery, 31 (2000), 760–769.Google Scholar
  111. [RAc]
    Rajagopal, K.R. and Srinivasa, A.R., A thermodynamic framework for rate-type fluid models, J. Non-Newtonian Fluid Mech., 88 (2000), 207–227.MATHGoogle Scholar
  112. [RAd]
    Raval, A.P., Dave, K.R., Prado, R., Katz, L.M., Busto, R., Sick, T.J., Ginsberg, M.D., Mochly-Rosen, D., and Perez-Pinzon, M.A., Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation, J. Cereb. Blood Flow Metab., 25 (2005), 730–741.Google Scholar
  113. [RAe]
    Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C., and Milligan, R.A., Structure of the actin-myosin complex and its implications for muscle contraction, Science, 261 (1993), 58–65.Google Scholar
  114. [ROa]
    Robert, L., Elasticité des tissus et vieillissement, Pour la science, 201 (1994), 56–62.Google Scholar
  115. [ROb]
    Robinson, T.F., Factor, S.M., and Sonnenblick, E.H., The heart as a suction pump, Sci. Amer., 6 (1986), 62–69.Google Scholar
  116. [SAa]
    Sainte-Marie, J., Chapelle, D., and Sorine, M., Data assimilation for an electro-mechanical model of the myocardium, In Second M.I.T. Conference on Computational Fluid and Solid Mechanics, Bathe, K.J. Ed. (2003), pp. 1801–1804.Google Scholar
  117. [SAb]
    Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., Hirai, H., Makuuchi, M., Hirata, Y., and Nagai, R., Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis, Nat. Med., 8 (2002), 403–409.Google Scholar
  118. [SAc]
    Sato, M., Theret, D.P., Wheeler, L.T., Ohshima, N., and Nerem, R.M., Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cells viscoelastic properties, Trans. ASME J. Biomech. Eng., 112 (1990), 263–268.Google Scholar
  119. [SCa]
    Schaller, M.D. and Parsons, J.T., ppl25FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk, Mol. Cell. Biol., 15 (1995), 2635–2645.Google Scholar
  120. [SCb]
    Schenkel, A.R., Mamdouh, Z., and Muller W.A., Locomotion of monocytes on endothelium is a critical step during extravasation, Nature Immunology, 5 (2004), 393–400.Google Scholar
  121. [SCc]
    Schmidt, F.G., Hinner, B., Sackmann, E., and Tang, J.X., Viscoelastic properties of semiflexible filamentous bacteriophage fd, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 62 (2000), 5509–5517.Google Scholar
  122. [SEa]
    Sermesant, M., Forest, C., Pennec, X., Delingette, H., and Ayache, N., Deformable biomechanical models: application to 4D cardiac image analysis, Med. Image. Anal., 7 (2003), 475–488.Google Scholar
  123. [SHa]
    Sheng, M., McFadden, G., and Greenberg, M.E., Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB, Neuron, 4 (1990), 571–582.Google Scholar
  124. [SIa]
    Sipido, K.R., Callewaert, G., and Carmeliet, E., Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes, Circ. Res., 76 (1995), 102–109.Google Scholar
  125. [SMa]
    Smith, N.P., Pullan, A.J., and Hunter, P.J., An anatomically based model of transient coronary blood flow in the heart, SIAM J. Appl. Math., 62 (2002), 990–1018.MATHMathSciNetGoogle Scholar
  126. [SMb]
    Smyth, S.S., Joneckis, C.C., and Parise L.V., Regulation of vascular integrins, Blood, 81 (1993), 2827–2843.Google Scholar
  127. [SOa]
    Sobolewski, K., Wolanska, M., Bankowski, E., Gacko, M., and Glowinski, S., Collagen, elastin and glycosaminoglycans in aortic aneurysms, Acta Biochim. Pol., 42 (1995), 301–307.Google Scholar
  128. [STa]
    Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P., and Holdsworth, D.W., Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, Am. J. Neuroradiol., 24 (2003), 559–566.Google Scholar
  129. [STb]
    Stergiopulos, N., Tardy, Y., and Meister, J.J., Nonlinear separation of forward and backward running waves in elastic conduits, J. Biomech., 26 (1993), 201–209.Google Scholar
  130. [STc]
    Stergiopulos, N., Westerhof, B.E., and Westerhof, N., Total arterial inertance as the fourth element of the Windkessel model Am. J. Physiol., Beart Circ. Physiol., 276 (1999), H81–H88.Google Scholar
  131. [STd]
    Stradins, P., Lacis, R., Ozolanta, I., Purina, B., Ose, V., Feldmane, L., and Kasyanov, V., Comparison of biomechanical and structural properties between human aortic and pulmonary valve, Eur. J. Cardiothorac. Surg., 26 (2004), 634–639.Google Scholar
  132. [SUa]
    Surks, H.K., Mochizuki, N., Kasai, Y., Georgescu, S.P., Tang, K.M., Ito, M., Lincoln, T.M., and Mendelsohn, M.E., Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα, Science, 286 (1999), 1583–1587.Google Scholar
  133. [THa]
    Theret, D.P., Levesque, M.J., Sato, M., Nerem, R.M., and Wheeler, L.T., The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements, Trans. ASME J. Biomech. Eng., 110 (1988), 190–199.Google Scholar
  134. [THb]
    Thiriet, M., Issa, R., and Graham, J.M.R., A pulsatile developing flow in a bend, J. Phys. III (1992), 995–1013.Google Scholar
  135. [THc]
    Thiriet, M., Pares, C., Saltel, E., and Hecht, F., Numerical model of steady flow in a model of the aortic bifurcation, ASME J. Biomech. Eng., 114 (1992), 40–49.Google Scholar
  136. [THd]
    Thiriet, M., Martin-Borret G., and Hecht, F., Ecoulement rhéofluidifiant dans un coude et une bifurcation plane symétrique. Application à l’écoulement sanguin dans la grande circulation, J. Phys. III, 6 (1996), 529–542.Google Scholar
  137. [TUa]
    Tunggal, J.A., Helfrich, I., Schmitz, A., Schwarz, H., Ganzel, D., Fromm, M., Kemler, R., Krieg, T., and Messen, C.M., E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions, EMBO J., 24 (2005), 1146–1156.Google Scholar
  138. [TUb]
    Turner, C.E., Paxillin and focal adhesion signalling, Nat. Cell Biol., 2 (2000), E231–E236.Google Scholar
  139. [VAa]
    van Nieuw Amerongen G.P. and van Hinsbergh, V.W.M., Cytoskeletal effects of Rho-like small guanine nucleotide-binding proteins in the vascular system, Arterioscler. Thromb. Vasc. Biol., 21 (2001), 300–311.Google Scholar
  140. [VAb]
    van Royen, N., Piek, J.J., Buschmann, I., Hoefer, I., Voskuil, M., and Schaper, W., Stimulation of arteriogenesis: a new concept for the treatment of arterial occlusive disease, Cardiovasc. Res., 49 (2001), 543–553.Google Scholar
  141. [VAc]
    Vanhoutte, P.M., Endothelial dysfunction and atherosclerosis, Eur. Heart J., 18 (1997), E19–E29.Google Scholar
  142. [VEa]
    Verdier, C., Rheological properties of living materials: from cells to tissues, J. Theor. Med., 5 (2003), 67–91.MATHGoogle Scholar
  143. [VEb]
    Veronda, D.R. and Westmann, R.A., Mechanical characterization of skin. Finite deformation, J. Biomech., 3 (1970), 114–124.Google Scholar
  144. [VIa]
    Viidik, A., Properties of tendons and ligaments, In Handbook of Bioengineering, Skalak, R., and Chien, S. Eds., McGraw-Hill, New York (1987), 6.1–6.19.Google Scholar
  145. [VIb]
    Villarreal, F.J., Lew, W.Y., Waldman, L.K., and Covell, J.W., Transmural myocardial deformation in the ischemic canine left ventricle, Circ. Res., 68 (1991), 368–381.Google Scholar
  146. [WAa]
    Wagner, D.D., The Weibel-Palade body: The storage granule for von Willebrand factor and P-selectin, Thromb. Haemost. 70 (1993), 105–110.Google Scholar
  147. [WAb]
    Wang, N., Butler, J.P., and Ingber, D.E., Mechanotransduction across the cell surface and through the cytoskeleton, Science, 260 (1993), 1124–1127.Google Scholar
  148. [WEa]
    Weinbaum, S. and Curry, F.E., Modelling the structural pathways for transcapillary exchange Symp. Soc. Exp. Biol., 49 (1995), 323–345.Google Scholar
  149. [WEb]
    Westerhof, N., Bosman, F., De Vries, C.J., and Noordergraaf, A., Analog studies of the human systemic arterial tree, J. Biomechanics, 2 (1969), 121–143.Google Scholar
  150. [WUa]
    Wu, J.Z. and Herzog, W., Modelling concentric contraction of muscle using an improved cross-bridge model, J. Biomech., 32 (1999), 837–848.Google Scholar
  151. [YAa]
    Yang, M., Taber, L.A., and Clark, E.B., A nonliner poroelastic model for the trabecular embryonic heart, J. Biomech. Eng., 116 (1994), 213–223.Google Scholar
  152. [YAb]
    Yap, A.S., Brieher, W.M., and Gumbiner, B.M., Molecular and functional analysis of cadherin-based adherens junctions, Annu. Rev. Cell. Dev. Biol., 13 (1997), 119–146.Google Scholar
  153. [YEa]
    Yeung, A. and Evans, E., Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets, Biophys. J., 56 (1989), 139–149.Google Scholar
  154. [YUa]
    Yurchenco, P.D. and O’Rear, J.J., Basal lamina assembly, Curr. Opin. Cell Biol., 6 (1994), 674–681.Google Scholar
  155. [ZAa]
    Zahalak, G.I., A distribution-moment approximation for kinetic theories of muscular contraction, Math. Biosci., 114 (1981), 55–89.Google Scholar
  156. [ZAb]
    Zamir, E. and Geiger, B. Components of cell-matrix adhesions, J. Cell Sci., 114 (2001), 3577–3579.Google Scholar
  157. [ZIa]
    Zimmermann, S., and Moelling, K., Phosphorylation and regulation of Raf by Akt (protein kinase B). Science, 286 (1999), 1741–1744.Google Scholar
  158. [ZUa]
    Zühlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W., and Reuter, H., Calmodulin supports both inactivation and facilitation of L-type calcium channels, Nature, 399 (1999), 159–162.Google Scholar
  159. [ZUb]
    Zulliger, M.A., Rachev, A., and Stergiopulos, N., A constitutive formulation of arterial mechanics including vascular smooth muscle tone, Am. J. Bhysiol. Beart Circ. Physiol., 287 (2004), H1335–H1343.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • M. Thiriet
    • 1
    • 2
  1. 1.REO team Laboratoire Jacques-Louis Lions, UMR CNRS 7598Université Pierre et Marie CurieParis cedex 05
  2. 2.INRIALe Chesnay Cedex

Personalised recommendations