Skip to main content

Rheology of Living Materials

  • Chapter
Modeling of Biological Materials

Abstract

In this chapter, the properties of biological materials are described both from a microscopic and a macroscopic point of view. Different techniques for measuring cell and tissue properties are described. Models are presented in the framework of continuum theories of viscoelasticity. Such models are used for characterizing experimental data. Finally, applications of such modeling are discussed in a few situations of interest

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenenberger, C., and Hoh, J.H., Relative mi-croelastic mapping of living cells by atomic force microscopy, Biophys. J., 74 (1998), 1564–1578.

    Google Scholar 

  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Molecular Biology of the Cell, 3rd edition, Garland, New York (1994).

    Google Scholar 

  3. Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farre, R. and Navajas, D., Microrheology of human lung epithelial cells measured by atomic force microscopy, Biophys.J., 84 (2003), 2071–2079.

    Google Scholar 

  4. Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J., 67 (1992), 569–589.

    Google Scholar 

  5. Barthès-Biesel, D. and Rallison, J.M., The time dependent defor-mation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., 113 (1981), 251.

    Article  MATH  Google Scholar 

  6. Bates, J.H.T., A micromechanical model of lung tissue rheology, Ann. Biomed. Eng., 26 (1998), 679–687.

    Article  Google Scholar 

  7. Baumgaertel, M. and Winter H.H., Determination of discrete relax-ation and retardation time spectra from dynamic mechanical data, Rheol. Acta, 28 (1989), 511–519.

    Article  Google Scholar 

  8. Bausch, A.R., Ziemann, F., Boulbitch, A.A., Jacobson, K., and Sackmann, E., Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys.J., 75 (1998), 2038–2049.

    Google Scholar 

  9. Bausch, A.R., Moller, W., and Sackmann, E., Measurement of local viscoelasticity and forces in living cells by magnetic tweezers, Biophys. J., 76 (1999), 573–579.

    Google Scholar 

  10. Bilston, L.E., Liu, Z., and Phan-Thien, N., Linear viscoelastic properties of bovine brain tissue in shear. Biorheology, 34 (1997), 377–385.

    Article  Google Scholar 

  11. Bining, G., Quate, C.F., and Gerber, C., Atomic force microscope, Phys. Rev. Lett., 56 (1986), 930–933.

    Article  Google Scholar 

  12. Bird, R.B., Armstrong, R.C., and Hassager, O., Dynamics of Poly-meric Liquids. Fluid Mechanics, Vol. I, Wiley Interscience, New York (1987).

    Google Scholar 

  13. Bouchaud, J.—P., Weak ergodicity—breaking and aging in disordered systems, J. Phys. I. France, 2 (1992), 1705–1713.

    Article  Google Scholar 

  14. Burton, K., Park, J.H., and Taylor, D.L., Keratocytes generate trac-tion forces in two phases, Molecular Biol. Cell, 10 (1999), 3745–3769.

    Google Scholar 

  15. Casson, M., A flow equation for pigment-oil suspensions of the print-ing ink type, in: Mills, C.C., ed., Rheology of Disperse Systems, Pergamon, Oxford (1959).

    Google Scholar 

  16. Caillerie, D., Mourad, A., and Raoult, A., Cell-to-muscle homog-enization. Application to a constitutive law for the myocardium, Math. Model. Numer. Anal., 37 (2003), 681–698.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chien, S., Shear dependence of effective cell volume as a determinant of blood viscosity, Science, 168 (1970), 977–979.

    Article  Google Scholar 

  18. Cokelet, G.R., Merrill, E.W., Gilliand, E.R., Shin, H., Britten, A., and Wells, R.E., The rheology of human blood measurement near and at zero shear rate, Trans. Soc. Rheol., 7 (1963), 303–317.

    Article  Google Scholar 

  19. Condeelis, J., Life at the leading edge: the formation of cell protru-sions, Ann. Rev. Cell Biol., 9 (1993), 411–444.

    Article  Google Scholar 

  20. Crocker, J.C., Valentine, M.T., Weeks, E.R., Gisler, T., Kaplan, P.D., Yodh, A.G., and Weitz, D.A., Two-point microrheology of inhomogeneous materials Phys. Rev. Lett., 85 (2000), 888–891.

    Article  Google Scholar 

  21. Dehoff, P.H., On the nonlinear viscoelastic behavior of soft biological tissues. J. Biomech., 11 (1978), 35–40.

    Article  Google Scholar 

  22. Dembo, M. and Wang, Y.-L., Stresses at the cell-substrate interface during locomotion of fibroblasts, Biophys. J., 76 (1999), 2307–2316.

    Google Scholar 

  23. Dembo, M., Torney, D.C., Saxman, K., and Hammer, D., The reaction — limited kinetics of membrane to surface adhesion and detachment, Proc. R. Soc. Lond. B, 234 (1988), 55–83.

    Google Scholar 

  24. Dickinson, R.B. and Tranquillo, R.T., A stochastic model for adhesion-mediated cell random motility and haptotaxis, J. Math. Biol., 31 (1993), 563–600.

    Article  MATH  Google Scholar 

  25. DiMilla, P.A., Barbee, K., and Lauffenburger, D.A., Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys.J., 60 (1991), 15–37.

    Google Scholar 

  26. Drochon, A., Barthès-Biesel, D., Lacombe, C., and Lelièvre, J.C., Determination of the red blood cell apparent membrane elastic mod-ulus from viscometric measurements, J. Biomech. Eng., 112 (1990), 241–249.

    Google Scholar 

  27. Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., and Fredberg, J.J., Scaling the microrheology of living cells, Phys. Rev. Lett., 87 (2001), 148102:1–4.

    Google Scholar 

  28. Fawcett, D.W., Bloom and Fawcett: A Textbook of Histology, 11th edn. W. B. Saunders, Philadelphia (1986).

    Google Scholar 

  29. Friedl, P., Brocker, E.B., and Zanker, K.S., Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhes. Commun., 6 (1998), 225–236.

    Article  Google Scholar 

  30. Fung, Y.C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, New York (1993).

    Google Scholar 

  31. Fuller, R.B., Tensegrity, Portfolio Artnews Annual, 4 (1961), 112–127.

    MathSciNet  Google Scholar 

  32. Goldsmith, H.L., The microrheology of human erythrocyte suspen-sions, in: Becker, E. and Mikhailov, G.K., eds., Theoretical and Applied Mechanics, Proc. 13th IUTAM Congress, Springer, New York (1972).

    Google Scholar 

  33. Guilak, F. and Mow, V.C., The mechanical environment of the chon-drocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech., 33 (2000), 1663–1673.

    Article  Google Scholar 

  34. He, X. and Dembo, M., A dynamic model of cell division, in: Alt, W., Deutsch, A., and Dunn, G. eds, Mechanics of Cell and Tissue Motion, (1997), 55–66.

    Google Scholar 

  35. Helfrich, W., Elastic properties of lipid bilayer: Theory and experi-ments, Z. Naturforsch, C28 (1973), 693–703.

    Google Scholar 

  36. Hénon, S., Lenormand, G., Richert, A., and Gallet, F., A new deter-mination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys.J., 76 (1999), 1145–1151.

    Google Scholar 

  37. Hough, L.A. and Ou-Yang, H.D., A new probe for mechanical testing of nanostructures in soft materials, J. Nanoparticle Res., 1 (1999), 495–499.

    Article  Google Scholar 

  38. Huyghe, J.M., Van Campen, D.H., Arts, T., and Heethar, R.M., The constitutive behaviour of passive heart muscle tissue: A quasi—linear viscoelastic formulation, J. Biomech., 24 (1991), 841–849.

    Article  Google Scholar 

  39. Ingber, D.E., Cellular tensegrity: Defining the rules of biological design that govern the cytoskeleton. J. Cell Sci., 104 (1993), 613–627.

    Google Scholar 

  40. Ingber, D.E., Heidemann, S.R., Lamoureux, P., and Buxbaum, R.E., Opposing views on tensegrity as a structural framework for under-standing cell mechanics, J. Appl. Physiol., 89 (2000), 1663–1678.

    Google Scholar 

  41. Jadhav, S., Eggleton, C.D., and Konstantopoulos, K., A 3 — D com-putational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophys.J., 88 (2005), 96–104.

    Article  Google Scholar 

  42. Johnson, G.A., Livesay, G.A., Woo, S.L.Y., and Rajagopal, K.R., A single integral finite strain viscoelastic model of ligaments ten-dons, J. Biomech. Eng., 118 (1996), 221–226.

    Google Scholar 

  43. Khismatullin, D.B. and Truskey, G.A., A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers, Microvasc. Res., 68 (2004), 188–202.

    Article  Google Scholar 

  44. Lanir, Y., Constitutive equations for the lung tissue, J. Biomech. Eng., 105 (1983), 374–380.

    Google Scholar 

  45. Larson, R.G., The Structure and Rheology of Complex Fluids, Oxford University Press, New York (1999).

    Google Scholar 

  46. Liu, X.H. and Wang, X., The deformation of an adherent leukocyte under steady flow: A numerical study, J. Biomechanics, 37 (2004), 1079–1085.

    Article  Google Scholar 

  47. Macosko, C.W., Rheology, Principles, Measurements and Applications, Wiley-VCH, New York (1994).

    Google Scholar 

  48. Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., and Käs, J., Scan-ning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett., 85 (2000), 880–883.

    Article  Google Scholar 

  49. Mahaffy, R.E., Park, S., Gerde, E., Käs, J., and Shih, C.K., Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J., 86 (2004), 1777–1793.

    Article  Google Scholar 

  50. Malvern, L.E., Introduction to the Mechanics of a Continuum Medium, Prentice-Hall, Englewood Cliffs, NJ (1969).

    Google Scholar 

  51. Mason, T.G., Ganesan, K., Van Zanten, J.H., Wirtz, D. and Kuo, S.C., Particle tracking microrheology, Phys. Rev. Lett., 79 (1997), 3282–3285.

    Article  Google Scholar 

  52. Mason, T.G. and Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids, Phys. Rev. Lett., 74 (1995), 1250–1253.

    Article  Google Scholar 

  53. Myers, B.S., MacElhaney, J.H., and Doherty, B.J., The viscoelas-tic responses of the human cervical spine in torsion: Experimental limitations of quasi-linear theory and a method for reducing these effects, J. Biomech., 24 (1991), 811–817.

    Article  Google Scholar 

  54. Nasseri, S., Bilston, L.E. and Phan-Thien, N., Viscoelastic prop-erties of pig kidney in shear, experimental results and modelling. Rheol. Acta, 41 (2002), 180–192.

    Article  Google Scholar 

  55. N’Dry, N.A., Shyy W., and Tran-Son-Tay, R., Computational mod-eling of cell adhesion and movement using a continuum-kinetics approach, Biophys.J., 85 (2003), 2273–2286.

    Google Scholar 

  56. Phan-Thien, N., Nasseri, S., and Bilston, L.E., Oscillatory squeezing flow of a biological material. Rheol. Acta, 39 (2000), 409–417.

    Article  Google Scholar 

  57. Pinto, and Fung, Y.C., Mechanical properties of the heart muscle in the passive state, J. Biomech., 6 (1973), 597–606.

    Article  Google Scholar 

  58. Palececk, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F., Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature, 385 (1997), 537–540.

    Article  Google Scholar 

  59. Radmacher, M., Fritz, M., Kacher, C.M., Cleveland J.P., and Hansma, P.K., Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophys. J., 70 (1996), 556–567.

    Article  Google Scholar 

  60. Rotsch, C., Jacobson, K., and Radmacher, M., Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA, 96 (1999), 921–926.

    Article  Google Scholar 

  61. Sanjeevi, R., A viscoelastic model for the mechanical properties of biological materials, J. Biomech., 15 (1982), 107–109.

    Article  Google Scholar 

  62. Schmidt, C., Hinner, B., and Sackmann, E., Microrheometry under-estimates the viscoelastic moduli in measurements on F-actin solu-tions compared to macrorheometry, Phys. Rev. Letters, 61 (2000), 5646–5653.

    Google Scholar 

  63. Shoemaker, P.A., Schneider, D., Lee, M.C., and Fung, Y.C., A con-stitutive model for two dimensional soft tissues and its application to experimental data, J. Biomech., 19 (1986), 695–702.

    Article  Google Scholar 

  64. Skalak, R., Modeling the mechanical behavior of blood cells, Biorhe-ology, 10 (1973), 229–238.

    Google Scholar 

  65. Smith, B.A., Tolloczko, B., Martin, J.G., and Grütter, P., Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: Stiffening induced by contractile agonist, Biophys. J., 88 (2005), 2994–3007.

    Article  Google Scholar 

  66. Sollich, P., Lequeux, F., Hébraud, P., and Cates, M.E., Rheology of soft glassy materials, Phys. Rev. Lett., 78 (1997), 2020–2023.

    Article  Google Scholar 

  67. Stossel, T., On the crawling of animal cells, Science, 260 (1993), 1086–1094.

    Article  Google Scholar 

  68. Tseng, Y., Kole, T.P., and Wirtz, D., Micromechanical mapping of live cells by multiple-particle-tracking microrheology, Biophys. J., 83 (2002), 3162–3176.

    Google Scholar 

  69. Verdier, C., Review: Rheological properties of living materials. From cells to tissues, J. Theor. Medicine, 5 (2003), 67–91.

    Article  MATH  Google Scholar 

  70. Verdier, C., Jin, Q., Leyrat, A., Chotard-Ghodsnia, R., and Duperray, A., Modeling the rolling and deformation of a circulating cell adhering on an adhesive wall under flow, Arch. Physiol. Biochem., 111 (2003), 14–14.

    Google Scholar 

  71. Wagner, M.H., A constitutive analysis of extensional flows of poly-isobutylene, J. Rheol., 34 (1990), 943–958.

    Article  Google Scholar 

  72. Yamada, S., Wirtz, D., and Kuo, S.C., Mechanics of living cells measured by laser tracking microrheology, Biophys.J., 78 (2000), 1736–1747.

    Google Scholar 

  73. Yeung, A. and Evans, E., Cortical shell-liquid core model for passive flow of liquid-like spherical cells in micropipettes, Biophys. J., 56 (1989), 139–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Chotard-Ghodsnia, R., Verdier, C. (2007). Rheology of Living Materials. In: Mollica, F., Preziosi, L., Rajagopal, K.R. (eds) Modeling of Biological Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4411-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4411-6_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4410-9

  • Online ISBN: 978-0-8176-4411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics