Rheology of Living Materials

  • R. Chotard-Ghodsnia
  • C. Verdier
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter, the properties of biological materials are described both from a microscopic and a macroscopic point of view. Different techniques for measuring cell and tissue properties are described. Models are presented in the framework of continuum theories of viscoelasticity. Such models are used for characterizing experimental data. Finally, applications of such modeling are discussed in a few situations of interest


Shear Rate Biological Material Capillary Number Rheological Model Mean Square Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHa]
    A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenenberger, C., and Hoh, J.H., Relative mi-croelastic mapping of living cells by atomic force microscopy, Biophys. J., 74 (1998), 1564–1578.Google Scholar
  2. [ALa]
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Molecular Biology of the Cell, 3rd edition, Garland, New York (1994).Google Scholar
  3. [ALb]
    Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farre, R. and Navajas, D., Microrheology of human lung epithelial cells measured by atomic force microscopy, Biophys.J., 84 (2003), 2071–2079.Google Scholar
  4. [ASa]
    Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J., 67 (1992), 569–589.Google Scholar
  5. [BAa]
    Barthès-Biesel, D. and Rallison, J.M., The time dependent defor-mation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., 113 (1981), 251.MATHCrossRefGoogle Scholar
  6. [BAb]
    Bates, J.H.T., A micromechanical model of lung tissue rheology, Ann. Biomed. Eng., 26 (1998), 679–687.CrossRefGoogle Scholar
  7. [BAc]
    Baumgaertel, M. and Winter H.H., Determination of discrete relax-ation and retardation time spectra from dynamic mechanical data, Rheol. Acta, 28 (1989), 511–519.CrossRefGoogle Scholar
  8. [BAd]
    Bausch, A.R., Ziemann, F., Boulbitch, A.A., Jacobson, K., and Sackmann, E., Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys.J., 75 (1998), 2038–2049.Google Scholar
  9. [BAe]
    Bausch, A.R., Moller, W., and Sackmann, E., Measurement of local viscoelasticity and forces in living cells by magnetic tweezers, Biophys. J., 76 (1999), 573–579.Google Scholar
  10. [BIa]
    Bilston, L.E., Liu, Z., and Phan-Thien, N., Linear viscoelastic properties of bovine brain tissue in shear. Biorheology, 34 (1997), 377–385.CrossRefGoogle Scholar
  11. [BIb]
    Bining, G., Quate, C.F., and Gerber, C., Atomic force microscope, Phys. Rev. Lett., 56 (1986), 930–933.CrossRefGoogle Scholar
  12. [BIc]
    Bird, R.B., Armstrong, R.C., and Hassager, O., Dynamics of Poly-meric Liquids. Fluid Mechanics, Vol. I, Wiley Interscience, New York (1987).Google Scholar
  13. [BOa]
    Bouchaud, J.—P., Weak ergodicity—breaking and aging in disordered systems, J. Phys. I. France, 2 (1992), 1705–1713.CrossRefGoogle Scholar
  14. [BUa]
    Burton, K., Park, J.H., and Taylor, D.L., Keratocytes generate trac-tion forces in two phases, Molecular Biol. Cell, 10 (1999), 3745–3769.Google Scholar
  15. [CAa]
    Casson, M., A flow equation for pigment-oil suspensions of the print-ing ink type, in: Mills, C.C., ed., Rheology of Disperse Systems, Pergamon, Oxford (1959).Google Scholar
  16. [CAb]
    Caillerie, D., Mourad, A., and Raoult, A., Cell-to-muscle homog-enization. Application to a constitutive law for the myocardium, Math. Model. Numer. Anal., 37 (2003), 681–698.MATHCrossRefMathSciNetGoogle Scholar
  17. [CHa]
    Chien, S., Shear dependence of effective cell volume as a determinant of blood viscosity, Science, 168 (1970), 977–979.CrossRefGoogle Scholar
  18. [COa]
    Cokelet, G.R., Merrill, E.W., Gilliand, E.R., Shin, H., Britten, A., and Wells, R.E., The rheology of human blood measurement near and at zero shear rate, Trans. Soc. Rheol., 7 (1963), 303–317.CrossRefGoogle Scholar
  19. [COb]
    Condeelis, J., Life at the leading edge: the formation of cell protru-sions, Ann. Rev. Cell Biol., 9 (1993), 411–444.CrossRefGoogle Scholar
  20. [CRa]
    Crocker, J.C., Valentine, M.T., Weeks, E.R., Gisler, T., Kaplan, P.D., Yodh, A.G., and Weitz, D.A., Two-point microrheology of inhomogeneous materials Phys. Rev. Lett., 85 (2000), 888–891.CrossRefGoogle Scholar
  21. [DEa]
    Dehoff, P.H., On the nonlinear viscoelastic behavior of soft biological tissues. J. Biomech., 11 (1978), 35–40.CrossRefGoogle Scholar
  22. [DEb]
    Dembo, M. and Wang, Y.-L., Stresses at the cell-substrate interface during locomotion of fibroblasts, Biophys. J., 76 (1999), 2307–2316.Google Scholar
  23. [DEc]
    Dembo, M., Torney, D.C., Saxman, K., and Hammer, D., The reaction — limited kinetics of membrane to surface adhesion and detachment, Proc. R. Soc. Lond. B, 234 (1988), 55–83.Google Scholar
  24. [DIa]
    Dickinson, R.B. and Tranquillo, R.T., A stochastic model for adhesion-mediated cell random motility and haptotaxis, J. Math. Biol., 31 (1993), 563–600.MATHCrossRefGoogle Scholar
  25. [DIb]
    DiMilla, P.A., Barbee, K., and Lauffenburger, D.A., Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys.J., 60 (1991), 15–37.Google Scholar
  26. [DRa]
    Drochon, A., Barthès-Biesel, D., Lacombe, C., and Lelièvre, J.C., Determination of the red blood cell apparent membrane elastic mod-ulus from viscometric measurements, J. Biomech. Eng., 112 (1990), 241–249.Google Scholar
  27. [FAa]
    Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., and Fredberg, J.J., Scaling the microrheology of living cells, Phys. Rev. Lett., 87 (2001), 148102:1–4.Google Scholar
  28. [FAb]
    Fawcett, D.W., Bloom and Fawcett: A Textbook of Histology, 11th edn. W. B. Saunders, Philadelphia (1986).Google Scholar
  29. [FRa]
    Friedl, P., Brocker, E.B., and Zanker, K.S., Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhes. Commun., 6 (1998), 225–236.CrossRefGoogle Scholar
  30. [FUa]
    Fung, Y.C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, New York (1993).Google Scholar
  31. [FUb]
    Fuller, R.B., Tensegrity, Portfolio Artnews Annual, 4 (1961), 112–127.MathSciNetGoogle Scholar
  32. [GOa]
    Goldsmith, H.L., The microrheology of human erythrocyte suspen-sions, in: Becker, E. and Mikhailov, G.K., eds., Theoretical and Applied Mechanics, Proc. 13th IUTAM Congress, Springer, New York (1972).Google Scholar
  33. [GUa]
    Guilak, F. and Mow, V.C., The mechanical environment of the chon-drocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech., 33 (2000), 1663–1673.CrossRefGoogle Scholar
  34. [HEa]
    He, X. and Dembo, M., A dynamic model of cell division, in: Alt, W., Deutsch, A., and Dunn, G. eds, Mechanics of Cell and Tissue Motion, (1997), 55–66.Google Scholar
  35. [HEb]
    Helfrich, W., Elastic properties of lipid bilayer: Theory and experi-ments, Z. Naturforsch, C28 (1973), 693–703.Google Scholar
  36. [HEc]
    Hénon, S., Lenormand, G., Richert, A., and Gallet, F., A new deter-mination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys.J., 76 (1999), 1145–1151.Google Scholar
  37. [HOa]
    Hough, L.A. and Ou-Yang, H.D., A new probe for mechanical testing of nanostructures in soft materials, J. Nanoparticle Res., 1 (1999), 495–499.CrossRefGoogle Scholar
  38. [HUa]
    Huyghe, J.M., Van Campen, D.H., Arts, T., and Heethar, R.M., The constitutive behaviour of passive heart muscle tissue: A quasi—linear viscoelastic formulation, J. Biomech., 24 (1991), 841–849.CrossRefGoogle Scholar
  39. [INa]
    Ingber, D.E., Cellular tensegrity: Defining the rules of biological design that govern the cytoskeleton. J. Cell Sci., 104 (1993), 613–627.Google Scholar
  40. [INb]
    Ingber, D.E., Heidemann, S.R., Lamoureux, P., and Buxbaum, R.E., Opposing views on tensegrity as a structural framework for under-standing cell mechanics, J. Appl. Physiol., 89 (2000), 1663–1678.Google Scholar
  41. [JAa]
    Jadhav, S., Eggleton, C.D., and Konstantopoulos, K., A 3 — D com-putational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophys.J., 88 (2005), 96–104.CrossRefGoogle Scholar
  42. [JOa]
    Johnson, G.A., Livesay, G.A., Woo, S.L.Y., and Rajagopal, K.R., A single integral finite strain viscoelastic model of ligaments ten-dons, J. Biomech. Eng., 118 (1996), 221–226.Google Scholar
  43. [KHa]
    Khismatullin, D.B. and Truskey, G.A., A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers, Microvasc. Res., 68 (2004), 188–202.CrossRefGoogle Scholar
  44. [LAa]
    Lanir, Y., Constitutive equations for the lung tissue, J. Biomech. Eng., 105 (1983), 374–380.Google Scholar
  45. [LAb]
    Larson, R.G., The Structure and Rheology of Complex Fluids, Oxford University Press, New York (1999).Google Scholar
  46. [LIa]
    Liu, X.H. and Wang, X., The deformation of an adherent leukocyte under steady flow: A numerical study, J. Biomechanics, 37 (2004), 1079–1085.CrossRefGoogle Scholar
  47. [MAa]
    Macosko, C.W., Rheology, Principles, Measurements and Applications, Wiley-VCH, New York (1994).Google Scholar
  48. [MAb]
    Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., and Käs, J., Scan-ning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett., 85 (2000), 880–883.CrossRefGoogle Scholar
  49. [MAc]
    Mahaffy, R.E., Park, S., Gerde, E., Käs, J., and Shih, C.K., Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J., 86 (2004), 1777–1793.CrossRefGoogle Scholar
  50. [MAd]
    Malvern, L.E., Introduction to the Mechanics of a Continuum Medium, Prentice-Hall, Englewood Cliffs, NJ (1969).Google Scholar
  51. [MAe]
    Mason, T.G., Ganesan, K., Van Zanten, J.H., Wirtz, D. and Kuo, S.C., Particle tracking microrheology, Phys. Rev. Lett., 79 (1997), 3282–3285.CrossRefGoogle Scholar
  52. [MAf]
    Mason, T.G. and Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids, Phys. Rev. Lett., 74 (1995), 1250–1253.CrossRefGoogle Scholar
  53. [MYa]
    Myers, B.S., MacElhaney, J.H., and Doherty, B.J., The viscoelas-tic responses of the human cervical spine in torsion: Experimental limitations of quasi-linear theory and a method for reducing these effects, J. Biomech., 24 (1991), 811–817.CrossRefGoogle Scholar
  54. [NAa]
    Nasseri, S., Bilston, L.E. and Phan-Thien, N., Viscoelastic prop-erties of pig kidney in shear, experimental results and modelling. Rheol. Acta, 41 (2002), 180–192.CrossRefGoogle Scholar
  55. [NDa]
    N’Dry, N.A., Shyy W., and Tran-Son-Tay, R., Computational mod-eling of cell adhesion and movement using a continuum-kinetics approach, Biophys.J., 85 (2003), 2273–2286.Google Scholar
  56. [PHa]
    Phan-Thien, N., Nasseri, S., and Bilston, L.E., Oscillatory squeezing flow of a biological material. Rheol. Acta, 39 (2000), 409–417.CrossRefGoogle Scholar
  57. [PIa]
    Pinto, and Fung, Y.C., Mechanical properties of the heart muscle in the passive state, J. Biomech., 6 (1973), 597–606.CrossRefGoogle Scholar
  58. [PAa]
    Palececk, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F., Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature, 385 (1997), 537–540.CrossRefGoogle Scholar
  59. [RAa]
    Radmacher, M., Fritz, M., Kacher, C.M., Cleveland J.P., and Hansma, P.K., Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophys. J., 70 (1996), 556–567.CrossRefGoogle Scholar
  60. [ROa]
    Rotsch, C., Jacobson, K., and Radmacher, M., Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA, 96 (1999), 921–926.CrossRefGoogle Scholar
  61. [SAa]
    Sanjeevi, R., A viscoelastic model for the mechanical properties of biological materials, J. Biomech., 15 (1982), 107–109.CrossRefGoogle Scholar
  62. [SCa]
    Schmidt, C., Hinner, B., and Sackmann, E., Microrheometry under-estimates the viscoelastic moduli in measurements on F-actin solu-tions compared to macrorheometry, Phys. Rev. Letters, 61 (2000), 5646–5653.Google Scholar
  63. [SHa]
    Shoemaker, P.A., Schneider, D., Lee, M.C., and Fung, Y.C., A con-stitutive model for two dimensional soft tissues and its application to experimental data, J. Biomech., 19 (1986), 695–702.CrossRefGoogle Scholar
  64. [SKa]
    Skalak, R., Modeling the mechanical behavior of blood cells, Biorhe-ology, 10 (1973), 229–238.Google Scholar
  65. [SMa]
    Smith, B.A., Tolloczko, B., Martin, J.G., and Grütter, P., Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: Stiffening induced by contractile agonist, Biophys. J., 88 (2005), 2994–3007.CrossRefGoogle Scholar
  66. [SOa]
    Sollich, P., Lequeux, F., Hébraud, P., and Cates, M.E., Rheology of soft glassy materials, Phys. Rev. Lett., 78 (1997), 2020–2023.CrossRefGoogle Scholar
  67. [STa]
    Stossel, T., On the crawling of animal cells, Science, 260 (1993), 1086–1094.CrossRefGoogle Scholar
  68. [TSa]
    Tseng, Y., Kole, T.P., and Wirtz, D., Micromechanical mapping of live cells by multiple-particle-tracking microrheology, Biophys. J., 83 (2002), 3162–3176.Google Scholar
  69. [VEa]
    Verdier, C., Review: Rheological properties of living materials. From cells to tissues, J. Theor. Medicine, 5 (2003), 67–91.MATHCrossRefGoogle Scholar
  70. [VEb]
    Verdier, C., Jin, Q., Leyrat, A., Chotard-Ghodsnia, R., and Duperray, A., Modeling the rolling and deformation of a circulating cell adhering on an adhesive wall under flow, Arch. Physiol. Biochem., 111 (2003), 14–14.Google Scholar
  71. [WAa]
    Wagner, M.H., A constitutive analysis of extensional flows of poly-isobutylene, J. Rheol., 34 (1990), 943–958.CrossRefGoogle Scholar
  72. [YAa]
    Yamada, S., Wirtz, D., and Kuo, S.C., Mechanics of living cells measured by laser tracking microrheology, Biophys.J., 78 (2000), 1736–1747.Google Scholar
  73. [YEa]
    Yeung, A. and Evans, E., Cortical shell-liquid core model for passive flow of liquid-like spherical cells in micropipettes, Biophys. J., 56 (1989), 139–149.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • R. Chotard-Ghodsnia
    • 1
  • C. Verdier
    • 1
  1. 1.Laboratoire de Spectrométrie PhysiqueUJF-CNRS, UMR 5588 BP87, 140 avenue de la PhysiqueSaint-Martin d’HèresFrance

Personalised recommendations