# Harmonic Analysis and Functional Equations

• Henrik Stetkær
Conference paper
Part of the Trends in Mathematics book series (TM)

## Abstract

Functional equations occur in many parts of mathematics, also in harmonic analysis. As an example we mention that the complex exponential function 7 :x ? exp (?x) for any ? ∈ R is a solution of Cauchy’s functional equation
$$\gamma \left( {x + y} \right) = \gamma \left( x \right)\gamma \left( y \right),\;x,y \in R$$
(1)

## Keywords

Functional Equation Haar Measure Spherical Function Continuous Homomorphism Aequationes Math
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 
Aczél, J., Chung, J. K. and Ng, C. T.: Symmetric second differences in product form on groups. Topics in mathematical analysis (pp. 1–22) edited by Th. M. Rassias. Ser. Pure Math., 11, World Scientific Publ. Co., Teaneck, NJ, 1989.Google Scholar
2. 
Aczél, J. and Dhombres, J.:Functional equations in several variables . Cambridge University Press Cambridge/New York/New Rochelle/ Melbourne/Sydney 1989.
3. 
Aczél, J., Haruki, H., McKiernan, M. A. and Sakovic, G. N.:General and Regular Solutions of Functional Equations Characterizing Harmonic Polynomials. Aequationes Math. 1 (1968), 37–53.
4. 
d’Alembert, J.,Recherches sur la courbe que forme une corde tendue mise en vibration, I-II. Hist. Acad. Berlin (1747) 214–249.Google Scholar
5. 
Badora, R., Ona joint generalization of Cauchy’s and d’Alembert’s functional equations. Aequationes Math. 43 (1992), 72–89.
6. 
Baker, J. A.,The stability of the cosine equation. Proc. Amer. Math. Soc. 80 (1980), 411–416.
7. 
Chojnacki, W.,Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts. Compositio Math. 57 (1986), 15–60.
8. 
Chojnacki, W.,On some functional equations generalizing Cauchy’s and d’Alembert’s functional equations. Colloq. Math. 55 (1988), 169–178.
9. 
Chung, J. K. (Zhong Jukang), Ebanks, B. R., Ng, C. T., Sahoo, P. K. and Zeng, W. B.,On generalized rectangular and rhombic functional equations. Publ. Math. (Debrecen) 47 (1995), 249–270.
10. 
Chung, J. K., Kannappan, Pl. and Ng, C. T.,On two trigonometric functional equations. Mathematics Reports Toyama University 11 (1988), 153–165.
11. 
Helgason, S.:“Groups and Geometric Analysis.” Academic Press, Inc., Orlando — San Diego — San Francisco — New York — London Toronto — Montreal — Sydney — Tokyo — Sao Paulo 1984.
12. 
Hewitt, E. and Ross, K. A.: Abstract Harmonic Analysis IF. Springer-Verlag. Berlin-Heidelberg-New York 1970.Google Scholar
13. 
Kannappan, Pl.,The functional equation f(xy)+f(xy 1 ) = 2f(x)f(y) for groups .Proc. Amer. Math. Soc. 19 (1968), 69–74.
14. 
Poulsen, T. and Stetkaer, H.,Functional equations on abelian groups with involution. Preprint Series 1995 No 16, Matematisk Institut, Aarhus University, Denmark, pp. 1–23.Google Scholar
15. 
Stetkaer, H.,D’Alembert’s equation and spherical functions. Aequationes Math. 48 (1994), 220–227.
16. 
Stetkaer, H.,Wilson’s Functional Equations on Groups. Aequationes Math. 49 (1995), 252–275.
17. 
Stetkaer, H.,Functional Equations and Spherical Functions. Preprint Series 1994 No 18, Matematisk Institut, Aarhus University, Denmark, pp. 1–28.Google Scholar
18. 
Stetkaer, H.,Wilson’s functional equation on C. Preprint Series 1995 No 1, Matematisk Institut, Aarhus University, Denmark, pp. 1–15. Accepted for publication by Aequationes Math.Google Scholar
19. 
Stetkaer, H.,Functional equations on abelian groups with involution. Accepted for publication by Aequationes Math.Google Scholar
20. 
Wilson, W. H.,On certain related functional equations. Bull. Amer. Math. Soc. 26 (1919), 300–312.