Advertisement

About Some Random Fourier Series and Multipliers Theorems on Compact Commutative Hypergroups

  • Marc-Olivier Gebuhrer
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

The character theory of compact commutative hypergroups is yet far from being well understood; as this paper shows, the behaviour of the Plancherel measure is related to some deeper harmonic analysis involving notably Sidon sets. Pioneering work related to this area has been performed a long time ago by R. Vrem, K. Ross, J. Fournier (see references below). This elementary study provides only a sample of easy results, but paves the way to apparently much deeper questions.

This paper is comprised of two parts: the first one has been already mentioned; the second provides some easy multiplier theorems. In the context of hypergroups, and despite its elementary character, much of the material presented here is new.

Keywords

Approximate Identity Multiplier Theorem Classical Line Plancherel Measure Bounded Approximate Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-H]
    W.R. BLOOM, H. HEYER, Harmonic analysis of probability measures on hypergroups, De Gruyter Studies in Mathematics 20 (1995), De Gruyter; Berlin, New-York.MATHCrossRefGoogle Scholar
  2. [E]
    R.E. EDWARDS, Fourier Series, A modern Introduction Vol. II, Holt, Rinehart and Winston, Inc. (1967).Google Scholar
  3. [F]
    J.J.F. FOURNIER, K.A. ROSS, Random Fourier series on compact abelian hypergroups, J. Australian Math. Soc. 37 (1984), 45–81.MathSciNetMATHCrossRefGoogle Scholar
  4. [G]
    M.O. GEBUHRER, Changing signs in a Fourier series on a compact commutative hypergroup, in preparation.Google Scholar
  5. [G1]
    M.O. GEBUHRER, Bounded measure algebras: a fixed point theorem approach. In “Applications of hypergroups and related measure algebras” (Providence, RI) (O. Gebuhrer, W.C. Con-nett, A.L. Schwartz, eds.) A.M.S., Contemporary Mathematics 183 (1995), 171–190.CrossRefGoogle Scholar
  6. [G2]
    M.O. GEBUHRER, Analyse Harmonique sur les espaces de Gel’fand-Levitan et applications à la théorie des semigroupes de convolution, Thèse de Doctorat d’Etat(1989 Université Louis Pasteur Strasbourg).Google Scholar
  7. [G-Sc1]
    M.O. GEBUHRER, A.L. SCHWARTZ, Sidon sets and Riesz sets for some measure algebras on the disk.To appear in Colloquium Mathematicum.Google Scholar
  8. [G-Sc2]
    M.O. GEBUHRER, A.L. SCHWARTZ, Sidon sets on compact commutative hypergroups, in preparation.Google Scholar
  9. [H]
    S. HELGASON—, Groups and Geometric Analysis. (Integral Geometry, Invariant Differential Operators and Spherical functions).Academic Press (1984).MATHGoogle Scholar
  10. [L]
    LASSER, Lacunarity with respect to Orthogonal Polynomial Sequences, Acta. Scien. Math. 47(1984), 391–403.MathSciNetMATHGoogle Scholar
  11. [S]
    R. SPECTOR, Aperçu de la théorie des hypergroupes. In “Analyse Harmonique sur les groupes de Lie” Séminaire Nancy-Strasbourg, Lecture Notes in Mathematics 497 Springer(1973–75), 643–673.CrossRefGoogle Scholar
  12. [Vi]
    R. VREM, Harmonic Analysis on Compact Hypergroups, Pac. J. Math. 85 (1979), 239–251.MathSciNetCrossRefGoogle Scholar
  13. [V2] R. VREM, Thesis.Google Scholar
  14. [V3]
    R. VREM, Lacunarity on Compact Hypergroups, Math. Z. 164(1978), 93–104.MathSciNetMATHCrossRefGoogle Scholar
  15. [V4]
    R. VREM, Independent Sets and Lacunarity for Hypergroup, J. Austr. Math. Soc. (Series B) 50 (1991), 171–188.MathSciNetMATHCrossRefGoogle Scholar
  16. [Z]
    A. ZYGMUND, Trigonometrical series, Dover Publications S 290 (First edition in (1935; references are w.r.t. edition of 1955)).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marc-Olivier Gebuhrer
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et C.N.R.S.Strasbourg CedexFrance

Personalised recommendations