Advertisement

Some Methods to Find Moment Functions on Hypergroups

  • Léonard Gallardo
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

We present two methods to find moment functions on hypergroups. The first consists in the determination of admissible paths in the dual and the second is based on the property of asymptotic drift of the convolution. Some illustrative examples are also considered.

Keywords

Haar Measure Moment Function Usual Topology Compact Topological Group Admissible Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-G]
    BOUHAIK, M., GALLARDO, L. [1992] Un théorème limite central dans un hypergroupe bidimensionnel. Ann. Inst. Henri Poincaré Prob. Stat. 28 n°1, p. 47–61.Google Scholar
  2. [B-H]
    BLOOM, W., HEYER, H. [1995] Harmonic analysis of probability measures on hypergroups. Walter de Gruyter Ed., Berlin-New York.MATHCrossRefGoogle Scholar
  3. [C]
    CHEBLI, H. [1974] Opérateurs de translation généralisée et semi groupes de convolution. Lecture Notes in Math. 404, p. 35–59.MathSciNetCrossRefGoogle Scholar
  4. [F]
    FARAUT, J. [1975] Dispersion d’une mesure de probabilité surSL(2, R) biinvariante par 50(1,R) et théorème de la limite centrale. Université Louis Pasteur — Strasbourg.Google Scholar
  5. [Gl]
    GALLARDO, L. [1996] Chaînes de Markov à dérive stable et lois des grands nombres sur les hypergroupes. Ann. Inst. H. Poincaré, Prob. Stat., à paraître.Google Scholar
  6. [G2]
    GALLARDO, L. [1996] Asymptotic drift of the convolution and moment functions on hypergroups. Math. Zeitschrift, to appear.Google Scholar
  7. [Ka]
    KARPELEVICH, F.L., TUTUBALIN, V.N., SHUR, M.G. [1959] Limit theorems for the composition of distributions in the Lobachevsky plane and space. Theory of Prob, and Appl. 4, p. 399–402.CrossRefGoogle Scholar
  8. [Ko]
    KOORWINDER, T.H. [1978] Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. J. London Math. Soc. 28, p. 101–114.CrossRefGoogle Scholar
  9. [Ki]
    KINGMAN J.F.C. [1963] Random walks with spherical symmetry. Acta Math. 109, p. 11–53.MathSciNetMATHCrossRefGoogle Scholar
  10. [S]
    SPECTOR, R. [1978] Mesures invariantes sur les hypergroupes. Trans. Amer. Soc. 239, p. 147–165.MathSciNetMATHCrossRefGoogle Scholar
  11. [T1]
    TRIMECHE, K. [1978] Probabilités indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisée sur la demi droite. Comptes Rendus Acad. Sc. Paris, Série A, t. 286, p. 63–66.MathSciNetMATHGoogle Scholar
  12. [T2]
    TRIMECHE, K. [1981] Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur [0,8]. J. Math. Pures-Appl. 60, p. 51–98.MathSciNetMATHGoogle Scholar
  13. [V]
    VOIT [1990] Laws of large numbers for polynomial hypergroups and some applications. J. Theor. Prob. 3, p. 245–266.MathSciNetMATHCrossRefGoogle Scholar
  14. [Z]
    ZEUNER, H. [1992] Moment functions and laws of large numbers on hypergroups. Math. Zeitschrift 211, p. 369–407.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Léonard Gallardo
    • 1
  1. 1.Département de MathématiquesUniversité de BrestBrestFrance

Personalised recommendations