Wavelets on Hypergroups

  • K. Trimeche
Part of the Trends in Mathematics book series (TM)


We consider hypergroupsKsatisfying certain conditions. Important examples of such hypergroups are the double coset hypergroup, the Chébli-Trimèche hypergroup and the hyper-group associated with spherical mean operator. We define onK wavelets and a continuous wavelet transform, we prove Plancherel and inversion formulas for this transform, and using coherent states we characterize the image space of this transform.


Coherent State Haar Measure Continuous Wavelet Inversion Formula Convolution Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W.R. BLOOM-H. HEYER:Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, Vol. 20, Editors: H. Bauer-J.L. Kazdan-E. Zehnder, de Gruyter, Berlin-New York, 1994.Google Scholar
  2. [2]
    W.R. BLOOM—Z. XU:The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups, Contemporary Math., Vol. 183, 1995, pp. 45–69.MathSciNetCrossRefGoogle Scholar
  3. [3]
    C.K. CHUI:An introduction to wavelets, Academic Press, 1992.MATHGoogle Scholar
  4. [4]
    A. FITOUHI—K. TRIMECHE:J. L. Lions transmutation operators and generalized continuous wavelet transform, Preprint. Faculty of Sciences of Tunis, 1995.Google Scholar
  5. [5]
    G.B. FOLLAND:Real analysis: modern techniques and their applications, John Wiley & Sons, New York, Chichester-Brisbane-Toronto-Singapore, 1984.MATHGoogle Scholar
  6. [6]
    R. GANGOLLI—V.S. VARADARAJAN:Harmonic analysis of spherical functions and real reductive groups, Vol. 101, Springer-Verlag, Berlin-New York, 1988.CrossRefGoogle Scholar
  7. [7]
    S. HELGASON:Group and geometry analysis,, integral geometry, invariant differential operators and spherical functions, Academic Press, New York, 1984.Google Scholar
  8. [8]
    R.I. JEWETT:Spaces with an Abstract convolution of measures, Advances in Maths. 18, 1975, pp. 1–101.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    T.H. KOORNWINDER:Wavelets: An elementary treatment of theory and applications, Edited by Tom H. Koornwinder, Series in Approximations and Decompositions, Vol. 1, World Scientific, 1993.Google Scholar
  10. [10]
    Y. MEYER:Ondelettes et opérateurs I. Actualités Mathématiques, Hermann, Editeurs des Sciences et des Arts, 1990.Google Scholar
  11. [11]
    M.N. NESSIBI—L.T. RACHDI—K. TRIMECHE:Ranges and inversion formulas for spherical means operator and its dual, J. Math. Anal, and Appl, Vol. 196, 1995, pp. 861–884.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    A.L. SCHWARTZ:Classification of one-dimensional hyper-groups, Proceedings of the A.M.S., Vol. 103, No. 4, 1988, pp. 1073–1081.MATHCrossRefGoogle Scholar
  13. [13]
    K. TRIMECHE:Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,+8), J. Math. Pures et Appl., Vol. 60, 1981, pp. 51–98.MathSciNetMATHGoogle Scholar
  14. [14]
    K. TRIMECHE:Transmutation operators and mean periodic functions associated with differential operators, Math. Reports, Vol. 4, No. 7, 1988, pp. 1–282; Harwood Academic Publishers, London-Paris-New York-Melbourne.MathSciNetGoogle Scholar
  15. [15]
    K. TRIMECHE:Inversion of the spherical mean operator and its dual using spherical wavelets, Proceedings of the conference held in Oberwolfach, Oct. 23–29, 1994, Editor: H. Heyer, World Scientific, Singapore-New Jersey-London-Hong Kong, 1995.Google Scholar
  16. [16]
    K. TRIMECHE:Continuous wavelet transforms on semisimple Lie groups and on Cartan motion groups, C. R. Acad. Sci. Canada, Vol. XVI, No. 4, 1994, pp. 161–165.MathSciNetGoogle Scholar
  17. [17]
    K. TRIMECHE:Inversion of the J. L. Lions transmutation operators using generalized wavelets, Preprint. Faculty of Sciences of Tunis, 1995.Google Scholar
  18. [18]
    Z. XU: Harmonic analysis on Chébli-Trimèche hyper groups, Ph.D. thesis, Murdoch University, Australia, 1994.Google Scholar
  19. [19]
    H.M. ZEUNER:One dimensional hypergroups, Adv. Math., Vol. 76, No. 1, 1989, pp. 1–18.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    H.M. ZEUNER:Limit theorems for one-dimensional hypergroups, Habilitations-Schrift, Tübingen, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. Trimeche
    • 1
  1. 1.Department of MathematicsFaculty of Sciences of TunisTunisTunisia

Personalised recommendations