Skip to main content

Oxygen Free Radicals Enhance Ergonovine-Induced Canine Coronary Vasoconstriction

  • Chapter
The Ischemic Heart

Abstract

In order to examine the effects of oxygen free radicals on the ergonovine (EM)-induced coronary vasoconstriction in vivo, we administered EM (50 μg) into the ostium of the left coronary artery (LCA) and angiographically evaluated the change of diameter of the left anterior descending (LAD) and the left circumflex (LCX) coronary artery in eight dogs before and after selective administration of oxygen free radicals, generated by xanthine (X)-xanthine oxidase (XO) reaction, into the LCX. To investigate the participation of serotonin in EM-induced vasoconstriction, the concentrations of serotonin in the LCA and the coronary sinus (CS) were measured before and after administration of X - XO. The dlameter of the LCX remained essentially unchanged after administration of X + XO. However, EM-induced constriction was greater in the LCX than in the LAD. The difference of serotonin (S) concentrations in the CS and in the ostium of the LCA [(S in CS) - (S in LCA)] gradually increased after administration of X + XO. Electron microscopy of endothelial surface revealed marked changes in the LCX, but such changes were not observed in the LAD. These results suggest that the enhancement of the EM-induced vasoconstriction of coronary artery by oxygen free radicals may probably be due to the morphological change and the rise in the S produced by oxidative injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hills LD, Braunwald E. 1978. Coronary-artery spasm. N Engl J Med 299:695–702.

    Article  Google Scholar 

  2. Maseri A, Severi S, De Nes M, L’Abbate A, Chierchia S, Marzilli M, Ballestra AM, Parodi O, Biagini A, Distante A. 1978. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Am J Cardiol 42:1019–1035.

    Article  PubMed  CAS  Google Scholar 

  3. Yasue H, Omote S, Takazawa A, Nagao M. 1983. Coronary arterial spasm in ischemic heart disease and its pathogenesis: a review. Circ Res 52(Suppl):I-147–I-152.

    CAS  Google Scholar 

  4. Miller DD, Waters DD, Szlachcic J, Theroux P. 1982. Clinical characteristics associated with sudden death in patients with variant angina. Circulation 66:588–592.

    PubMed  CAS  Google Scholar 

  5. Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Araki H, Nakamura M, Ishii Y, Tanaka K. 1983. Coronary artery spasm induced in atherosclerotic miniature swine. Science 221:560–562.

    Article  PubMed  CAS  Google Scholar 

  6. Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Ishii Y, Tanaka K, Nakamura M. 1985. Coronary artery spasm induced in miniature swine: angiographic evidence and relation to coronary atherosclerosis. Am Heart J 110:300–310.

    Article  PubMed  CAS  Google Scholar 

  7. Egashira K, Tomoike H, Yamamoto H, Yamada A, Hayashi Y, Nakamura M. 1986. Histamine-induced coronary spasm in regons of intimal thickening in miniature pigs: role of serum cholesterol and spontaneous or induced intimal thickening. Circulation 74:826–837.

    PubMed  CAS  Google Scholar 

  8. Kawachi Y, Tomoike H, Maruoka Y, Kikuchi Y, Araki H, Ishii Y, Tanaka K, Nakamura M. 1984. Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation 69:441–450.

    PubMed  CAS  Google Scholar 

  9. MacAlppine RN. 1980. Relation of coronary arterial spasm to site of organic stenosis. Am J Cardiol 46:143–153.

    Article  Google Scholar 

  10. Mercuiro P, Kronzon I, Winer H. 1982. Spasm of a normal or minimally narrowed coronary artery in the presence of severe fixed stenosis of the remaining vessel: clinical and angiographic observations. Circulation 65:825–830.

    Google Scholar 

  11. Yamagishi M, Miyatake K, Tamai J, Nakatani S, Koyama J, Nissen SE. 1994. Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J Am Coll Cardiol 23:352–357.

    Article  PubMed  CAS  Google Scholar 

  12. Schroedar JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, WexlerA L. 1977. Provocation of coronary spasm with ergonovine maleate. Am J Cardiol 40:487–491.

    Article  Google Scholar 

  13. Brazenor RM, Angus JA. 1981. Ergometrine contracts isolated canine coronary arteries by a serotonergic mechanism: no role for alpha adrenoceptors. J Pharmacol Exp Ther 218:530–536.

    PubMed  CAS  Google Scholar 

  14. Egashira K, Tomoike H, Hayashi Y, Yamada A, Nakamura M, Takeshita A. 1992. Mechanism of ergonovine-induced hyperconstriction of the large epicardial coronary artery in conscious dogs a month after arterial injury. Circ Res 71:435–442.

    PubMed  CAS  Google Scholar 

  15. Kuga T, Ohara Y, Hata H, Hirakawa Y, Tomoike H, Takeshita A. 1993. Inhibitory effects of heparin, aspirin and ketanserin on coronary artery vasoconstriction after arterial balloon injury in hypercholesterolemic miniature pigs. J Am Coll Cardio; 22:291–295.

    CAS  Google Scholar 

  16. Matsubara T, Nakazawa M, Yoshida Y, Imai S, Suzuki K, Izumi T, Shibata A. 1995. Hyperconstriction of canine coronary artery induced by ergonovine after oxidative injury. J Mol Cell Cardiol 27:A516.

    Google Scholar 

  17. Matsubara T, Nakazawa M, Yoshida Y, Imai S, Suzuki K, Hori T, Konno T, Higuchi K, Tamura Y, Yamazoe M, Ida T, Aizawa Y. 1997. Increasing vasoconstrictor response to ergonovine with oxidative injury in canine coronary artery. Coronary Artery Dis 8:1–7.

    Article  CAS  Google Scholar 

  18. Matsubara T, Musat-Marcu S, Misra HP, Dhalla NS, 1995. Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart. Mol Cell Biochem 153:79–85.

    Article  PubMed  CAS  Google Scholar 

  19. Kvietys PR, Inauen W, Bacon BR, Grisham MB. 1989. Xanthine oxidase induced injury to endothelium: role of intracellular iron and hydroxyl radcal. Am J Physiol 257:H1640–H1646.

    PubMed  CAS  Google Scholar 

  20. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. 1989. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924.

    Article  PubMed  CAS  Google Scholar 

  21. Steinbrecher UP. 1988. Role of superoxide in endothelial-cell modifications of low-density lipoproteins. Biochim Biphys Acta 959:20–30.

    CAS  Google Scholar 

  22. Rubanyi GM. 1988. Vascular effects of oxygen free radicals. Free Rad Biol Med 4:107–120.

    Article  PubMed  CAS  Google Scholar 

  23. Maseri A, Chierchia S. 1982. Coronary artery spasm: demonstration, definition, diagnosis and consequences. Prog Cardiovasc Dis 25:169–191.

    Article  PubMed  CAS  Google Scholar 

  24. Handin RI, Karabin R, Boxer GJ. 1977. Enhancement of platelet function by superoxide anion. J Clin Invest 59:959–965.

    Article  PubMed  CAS  Google Scholar 

  25. Salvemini D, de Nucci G, Sneddon JM, Vane JR. 1989. Superoxide anions enhance platelet adhesion and aggregation. Br J Pharmacol 97:1145–1150.

    PubMed  CAS  Google Scholar 

  26. Laurindo FRM, da Luz PL, Uint L, Rocha TF, Jaeger RC, Lopes EA. 1991. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83:1705–1715.

    PubMed  CAS  Google Scholar 

  27. Sasaki H, Okabe E. 1993. Modification by hydroxyl radicals of functional reactivity in rabbit lingual artery. Jpn J Phamacol 62:305–314.

    CAS  Google Scholar 

  28. Sheehan DW, Giese EC, Gugingo SF, Russel JA. 1993. Characterization and mechanisms of H2O2-induced contraction of pulmonary arteries. Am J Physiol 264:H1542–H1547.

    PubMed  CAS  Google Scholar 

  29. Gryglewski RJ, Palmer RMJ, Moncada S. 1986. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456.

    Article  PubMed  CAS  Google Scholar 

  30. Holtz J, Held W, Somer O, Kühne G, Bassenge E. 1982. Ergonovine-induced constriction of epicardial coronary arteries in conscious dogs: a-adrenoceptors are not involved. Basic Res Cardiol 77:278–291.

    Article  PubMed  CAS  Google Scholar 

  31. Griffith TM, Hughes ED, Lewis MJ, Henderson AH. 1984. Ergometrine induced arterial dilatation: an endothelium-mediated effect. J Mol Cell Cardiol 16:479–482.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Konno, T. et al. (1998). Oxygen Free Radicals Enhance Ergonovine-Induced Canine Coronary Vasoconstriction. In: Mochizuki, S., Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Ischemic Heart. Progress in Experimental Cardiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-39844-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-39844-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8105-1

  • Online ISBN: 978-0-585-39844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics