Advertisement

Oxygen Free Radicals Enhance Ergonovine-Induced Canine Coronary Vasoconstriction

  • Taku Konno
  • Taku Matsubara
  • Shoichi Imai
  • Mikio Nakazawa
  • Yutaka Yoshida
  • Tomoyuki Hori
  • KeisukeA Suzuki
  • Toru Ida
  • Kotaro Higuchi
  • Yusuke Tamura
  • Masaru Yamazoe
  • Yoshifusa Aizawa
Part of the Progress in Experimental Cardiology book series (PREC, volume 1)

Abstract

In order to examine the effects of oxygen free radicals on the ergonovine (EM)-induced coronary vasoconstriction in vivo, we administered EM (50 μg) into the ostium of the left coronary artery (LCA) and angiographically evaluated the change of diameter of the left anterior descending (LAD) and the left circumflex (LCX) coronary artery in eight dogs before and after selective administration of oxygen free radicals, generated by xanthine (X)-xanthine oxidase (XO) reaction, into the LCX. To investigate the participation of serotonin in EM-induced vasoconstriction, the concentrations of serotonin in the LCA and the coronary sinus (CS) were measured before and after administration of X - XO. The dlameter of the LCX remained essentially unchanged after administration of X + XO. However, EM-induced constriction was greater in the LCX than in the LAD. The difference of serotonin (S) concentrations in the CS and in the ostium of the LCA [(S in CS) - (S in LCA)] gradually increased after administration of X + XO. Electron microscopy of endothelial surface revealed marked changes in the LCX, but such changes were not observed in the LAD. These results suggest that the enhancement of the EM-induced vasoconstriction of coronary artery by oxygen free radicals may probably be due to the morphological change and the rise in the S produced by oxidative injury.

Keywords

Left Anterior Descend Xanthine Oxidase Coronary Sinus Oxygen Free Radical Left Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hills LD, Braunwald E. 1978. Coronary-artery spasm. N Engl J Med 299:695–702.CrossRefGoogle Scholar
  2. 2.
    Maseri A, Severi S, De Nes M, L’Abbate A, Chierchia S, Marzilli M, Ballestra AM, Parodi O, Biagini A, Distante A. 1978. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Am J Cardiol 42:1019–1035.PubMedCrossRefGoogle Scholar
  3. 3.
    Yasue H, Omote S, Takazawa A, Nagao M. 1983. Coronary arterial spasm in ischemic heart disease and its pathogenesis: a review. Circ Res 52(Suppl):I-147–I-152.Google Scholar
  4. 4.
    Miller DD, Waters DD, Szlachcic J, Theroux P. 1982. Clinical characteristics associated with sudden death in patients with variant angina. Circulation 66:588–592.PubMedGoogle Scholar
  5. 5.
    Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Araki H, Nakamura M, Ishii Y, Tanaka K. 1983. Coronary artery spasm induced in atherosclerotic miniature swine. Science 221:560–562.PubMedCrossRefGoogle Scholar
  6. 6.
    Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Ishii Y, Tanaka K, Nakamura M. 1985. Coronary artery spasm induced in miniature swine: angiographic evidence and relation to coronary atherosclerosis. Am Heart J 110:300–310.PubMedCrossRefGoogle Scholar
  7. 7.
    Egashira K, Tomoike H, Yamamoto H, Yamada A, Hayashi Y, Nakamura M. 1986. Histamine-induced coronary spasm in regons of intimal thickening in miniature pigs: role of serum cholesterol and spontaneous or induced intimal thickening. Circulation 74:826–837.PubMedGoogle Scholar
  8. 8.
    Kawachi Y, Tomoike H, Maruoka Y, Kikuchi Y, Araki H, Ishii Y, Tanaka K, Nakamura M. 1984. Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation 69:441–450.PubMedGoogle Scholar
  9. 9.
    MacAlppine RN. 1980. Relation of coronary arterial spasm to site of organic stenosis. Am J Cardiol 46:143–153.CrossRefGoogle Scholar
  10. 10.
    Mercuiro P, Kronzon I, Winer H. 1982. Spasm of a normal or minimally narrowed coronary artery in the presence of severe fixed stenosis of the remaining vessel: clinical and angiographic observations. Circulation 65:825–830.Google Scholar
  11. 11.
    Yamagishi M, Miyatake K, Tamai J, Nakatani S, Koyama J, Nissen SE. 1994. Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J Am Coll Cardiol 23:352–357.PubMedCrossRefGoogle Scholar
  12. 12.
    Schroedar JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, WexlerA L. 1977. Provocation of coronary spasm with ergonovine maleate. Am J Cardiol 40:487–491.CrossRefGoogle Scholar
  13. 13.
    Brazenor RM, Angus JA. 1981. Ergometrine contracts isolated canine coronary arteries by a serotonergic mechanism: no role for alpha adrenoceptors. J Pharmacol Exp Ther 218:530–536.PubMedGoogle Scholar
  14. 14.
    Egashira K, Tomoike H, Hayashi Y, Yamada A, Nakamura M, Takeshita A. 1992. Mechanism of ergonovine-induced hyperconstriction of the large epicardial coronary artery in conscious dogs a month after arterial injury. Circ Res 71:435–442.PubMedGoogle Scholar
  15. 15.
    Kuga T, Ohara Y, Hata H, Hirakawa Y, Tomoike H, Takeshita A. 1993. Inhibitory effects of heparin, aspirin and ketanserin on coronary artery vasoconstriction after arterial balloon injury in hypercholesterolemic miniature pigs. J Am Coll Cardio; 22:291–295.Google Scholar
  16. 16.
    Matsubara T, Nakazawa M, Yoshida Y, Imai S, Suzuki K, Izumi T, Shibata A. 1995. Hyperconstriction of canine coronary artery induced by ergonovine after oxidative injury. J Mol Cell Cardiol 27:A516.Google Scholar
  17. 17.
    Matsubara T, Nakazawa M, Yoshida Y, Imai S, Suzuki K, Hori T, Konno T, Higuchi K, Tamura Y, Yamazoe M, Ida T, Aizawa Y. 1997. Increasing vasoconstrictor response to ergonovine with oxidative injury in canine coronary artery. Coronary Artery Dis 8:1–7.CrossRefGoogle Scholar
  18. 18.
    Matsubara T, Musat-Marcu S, Misra HP, Dhalla NS, 1995. Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart. Mol Cell Biochem 153:79–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Kvietys PR, Inauen W, Bacon BR, Grisham MB. 1989. Xanthine oxidase induced injury to endothelium: role of intracellular iron and hydroxyl radcal. Am J Physiol 257:H1640–H1646.PubMedGoogle Scholar
  20. 20.
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. 1989. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924.PubMedCrossRefGoogle Scholar
  21. 21.
    Steinbrecher UP. 1988. Role of superoxide in endothelial-cell modifications of low-density lipoproteins. Biochim Biphys Acta 959:20–30.Google Scholar
  22. 22.
    Rubanyi GM. 1988. Vascular effects of oxygen free radicals. Free Rad Biol Med 4:107–120.PubMedCrossRefGoogle Scholar
  23. 23.
    Maseri A, Chierchia S. 1982. Coronary artery spasm: demonstration, definition, diagnosis and consequences. Prog Cardiovasc Dis 25:169–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Handin RI, Karabin R, Boxer GJ. 1977. Enhancement of platelet function by superoxide anion. J Clin Invest 59:959–965.PubMedCrossRefGoogle Scholar
  25. 25.
    Salvemini D, de Nucci G, Sneddon JM, Vane JR. 1989. Superoxide anions enhance platelet adhesion and aggregation. Br J Pharmacol 97:1145–1150.PubMedGoogle Scholar
  26. 26.
    Laurindo FRM, da Luz PL, Uint L, Rocha TF, Jaeger RC, Lopes EA. 1991. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83:1705–1715.PubMedGoogle Scholar
  27. 27.
    Sasaki H, Okabe E. 1993. Modification by hydroxyl radicals of functional reactivity in rabbit lingual artery. Jpn J Phamacol 62:305–314.Google Scholar
  28. 28.
    Sheehan DW, Giese EC, Gugingo SF, Russel JA. 1993. Characterization and mechanisms of H2O2-induced contraction of pulmonary arteries. Am J Physiol 264:H1542–H1547.PubMedGoogle Scholar
  29. 29.
    Gryglewski RJ, Palmer RMJ, Moncada S. 1986. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456.PubMedCrossRefGoogle Scholar
  30. 30.
    Holtz J, Held W, Somer O, Kühne G, Bassenge E. 1982. Ergonovine-induced constriction of epicardial coronary arteries in conscious dogs: a-adrenoceptors are not involved. Basic Res Cardiol 77:278–291.PubMedCrossRefGoogle Scholar
  31. 31.
    Griffith TM, Hughes ED, Lewis MJ, Henderson AH. 1984. Ergometrine induced arterial dilatation: an endothelium-mediated effect. J Mol Cell Cardiol 16:479–482.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Taku Konno
    • 1
  • Taku Matsubara
    • 1
  • Shoichi Imai
    • 1
  • Mikio Nakazawa
    • 1
  • Yutaka Yoshida
    • 1
  • Tomoyuki Hori
    • 1
  • KeisukeA Suzuki
    • 2
  • Toru Ida
    • 1
  • Kotaro Higuchi
    • 1
  • Yusuke Tamura
    • 1
  • Masaru Yamazoe
    • 1
  • Yoshifusa Aizawa
    • 1
  1. 1.Niigata University School of MedicineJapan
  2. 2.Kitasato University School of MedicineJapan

Personalised recommendations