Advertisement

Gene Therapy for Myocardial Infarction

  • Ryuichi Morishita
  • Motokuni Aoki
  • Hidetsugu Matsushita
  • Yasufumi Kaneda
  • Jitsuo Higaki
  • Toshio Ogihara
Part of the Progress in Experimental Cardiology book series (PREC, volume 1)

Abstract

The lack of efficient treatment for myocardial infarction remains an unresolved problem in the field of cardiovascular disease. Gene therapy may be a potential therapeutic strategy for the treatment of myocardial infarction. However, current methods of in vivo gene transfer into the heart are limited by their low efficiency and/or potential toxicity. In this chapter, we discussed the advantage of an efficient technique of gene and oligodeoxynucleotides (ODNs) transfer into the intact heart in vivo using the Sendai virus (HVJ: Hemagglutinating Virus of Japan)-liposome method. The potential gene therapy strategy for myocardial infarction is also discussed.

Keywords

Gene Therapy Antisense ODNs Human Gene Therapy Gene Transfer Method Antisense Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson WF. 1992. Human gene therapy. Science 256:808–813.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller AD. 1992. Human gene therapy comes of age. Nature 357:455–460.PubMedCrossRefGoogle Scholar
  3. 3.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1993. Single intraluminal delivery of antisense cdc 2 kinase and PCNA oligonucleotides results in chronic inhibition of neointinlal hyperplasia. Proc Natl Acad Sci USA 90:8474–8479.PubMedCrossRefGoogle Scholar
  4. 4.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Leyen HVL, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1994. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest ••: 1458–1464.Google Scholar
  5. 5.
    Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. 1994. Pharmacokinetics of antisense oligonucleotides (cyclin B1 and cdc 2 kinase) in the vessel wall: enhanced therapeutic utility for restenosis by HVJ-liposome method. Gene 149:13–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Leyen HVL, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau VJ. 1995. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of ecnitric oxide synthase gene. Proc Natl Acad Sci USA 92:1137–1141.PubMedCrossRefGoogle Scholar
  7. 7.
    Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1995. A novel molecular strategy using cis element “decoy” of E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92:5855–5859.PubMedCrossRefGoogle Scholar
  8. 8.
    Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ, Nabel EG. 1994. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265:781–784.PubMedCrossRefGoogle Scholar
  9. 9.
    Seltzer J, Chang M, Barr E, Parmacek MS, Leiden JM. 1994. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by a replication-defective adenovirus encoding a non-phosphorylatable retinoblastoma gene product. Circulation 90:1–90.Google Scholar
  10. 10.
    Simons M, Edelman ER, DeKeyser J-L, Langer R, Rosenberg RD. 1992. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 359: 67–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi Y, Fard A, Galeo A, Hutchinson HG, Vermami P, Dodge GR, Hall DJ, Shaheen F, Zalewski A. 1994. Transcatheter delivery of c-myc antisense oligomers reduces neointimal fomation in a porcine model of coronary artery balloon injury. Circulation 90:944–951.PubMedGoogle Scholar
  12. 12.
    Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. 1990. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82:2217–2221.PubMedGoogle Scholar
  13. 13.
    Buttric PM, Kass A, Kitsis RN, Kaplan MR, Lainwand LA. 1992. Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193–198.Google Scholar
  14. 14.
    Rudiger von Harsdorf, Schott RJ, Shen Y-T, Vatner SF, Mahdavi V, Nadal-Ginard B. 1993. Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 72:688–695.Google Scholar
  15. 15.
    Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM. 1993. Direct myocardial transfection in two animal models evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 68:18–25.PubMedGoogle Scholar
  16. 16.
    Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. 1991. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci USA 88:4138–4142.PubMedCrossRefGoogle Scholar
  17. 17.
    Acsadi G, Jiao S, Jani A, Duke D, Williams P, Chong W, Wolff JA. 1991. Direct gene transfer and expression into rat heart in vivo. New Biologist 3:71–81.PubMedGoogle Scholar
  18. 18.
    Schneider MD, French BA. 1993. The advent of adenovirus gene therapy for carcbovascular disease. Circulation 88:1937–1942.PubMedGoogle Scholar
  19. 19.
    Kirshenbaum LA, MacLellan WR, Mazur W, French BA, Schneider MD. 1993. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest 92: 381–387.PubMedGoogle Scholar
  20. 20.
    Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. 1993. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73:1202–1207.PubMedGoogle Scholar
  21. 21.
    French BA, Mazur W, Geske RS, Bolli R. 1994. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414–2424.PubMedGoogle Scholar
  22. 22.
    Barr E, Carroll JC, Kalynych AM, Tripathy SK, Kozarski, Wilson JM, Leiden JM. 1994. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther 1:51–58.PubMedGoogle Scholar
  23. 23.
    Dzau VJ, Morishita R, Gibbons GH. 1993. Gene therapy in the cardiovascular diseases. Trends Biotechnol 11:205–210.PubMedCrossRefGoogle Scholar
  24. 24.
    Morishita R, Gibbons GH, Dzau VJ. 1993. Gene therapy as potential treatment for cardiovascular diseases. In Singh BN (ed), Cardiovascular Pharmacology and Therapeutics. New York: Livingstone pp. 51–61.Google Scholar
  25. 25.
    Kaneda Y, Iwai K, Uchida T. 1989. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243:375–378.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaneda Y, Iwai K, Uchida T. 1989. Introduction and expression of the human insulin gene in adult rat liver. J Biol Chem 264:12126–12129.PubMedGoogle Scholar
  27. 27.
    Tomita N, Higaki J, Morishita R, Kato K, Mikami H, Kaneda Y, Ogihara T. 1992. Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Commun 186:129–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakanishi M, Uchida T, Sugawa H, Ishiura M, Okada Y. 1985. Efficient introduction of contents of liposomes into cell using HVJ (Sendai virus). Exp Cell Res 159:399–409.PubMedCrossRefGoogle Scholar
  29. 29.
    Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Itoh H. 1992. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257:1401–1403.PubMedCrossRefGoogle Scholar
  30. 30.
    Harada K, Lopez JJ, Friedman M, Prasad PV, Hibberd M, Sellke FW, Simons M. 1994. Vascular endothelial growth factor improves myocardial function in chronically ischemic porcine hearts (abstract). Circulation 90:1–427.Google Scholar
  31. 31.
    Koh GY, Klug MG, Soonpaa MH, Field LJ. 1993. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92:1548–1554.PubMedGoogle Scholar
  32. 32.
    Koh GY, Kim SJ, Klug MG, Park K, Soonpaa MH, Field LJ. 1995. Targeted expression of transforming growth factor-b1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest 95:114–121.PubMedGoogle Scholar
  33. 33.
    Soonpaa MH, Koh GY, Hug MG, Field LJ. 1994. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101.PubMedCrossRefGoogle Scholar
  34. 34.
    Bielinska A, Shivdasani RA, Zhang L, Nabel GJ. 1990. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250:997–1000.Google Scholar
  35. 35.
    Sullenger BA, Gallardo HF, Ungers GE, Giboa E. 1990. Overexpression of TAR sequence renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608.PubMedCrossRefGoogle Scholar
  36. 36.
    Yamada T, Horiuchi M, Morishita R, Zhang L, Pratt RE, Dzau VJ. In press. In vivo identification of a negative regulatory element in the mouse renin gene using direct gene transfer. J Clin Invest.Google Scholar
  37. 37.
    Morishita R, Higaki J, Tomita N, Aoki M, Moriguchi A, Tamura K, Murakami K, Kaneda Y, Ogihara T. 1996. Role of transcriptional cis-elements, angiotensinogen gene-activating element, of angiotensinogen gene in blood pressure regulation. Hypertension 27:502–507.PubMedGoogle Scholar
  38. 38.
    Lenardo MJ, Baltimore D. 1989. NF-kappa B: a pleitropic mediator of inducible and tissue-specific gene control. Cell 58:227–229.PubMedCrossRefGoogle Scholar
  39. 39.
    Libermann TA, Baltimore D. 1990. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334.PubMedGoogle Scholar
  40. 40.
    Satriano J, Schlondorff. 1994. Activation of attenuattion of transcriptional factor NF-kB in mouse glomerular cells in response to tumor necrosis factor-, immunoglobulin G, and adenosine 3′:5′-cyclic monophosphate. J Clin Invest 94:1629–1636.PubMedCrossRefGoogle Scholar
  41. 41.
    Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. 1992. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 176:1583–1593.PubMedCrossRefGoogle Scholar
  42. 42.
    Brennan DC, Jevnikar AM, Takei F, Reubin-Kelley VE. 1990. Mesangial cell accessory functions: mediation by intracellular adhesion molecule-1. Kidney Int 38:1039–1046.PubMedCrossRefGoogle Scholar
  43. 43.
    Sedor JR, Konieczkowski M, Huang S, Gronich JH, Nakazato Y, Gordon G, King CH. 1993. Cytokines, mesangial cell activation and glomerular injury. Kidney Int 39:S65–S70.Google Scholar
  44. 44.
    Herskowitz A, Choi S, Ansari AA, Wesselngh S. 1995. Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 146:419–428.PubMedGoogle Scholar
  45. 45.
    Kukielka GL, Smith CW, LaRosa GJ, Manning AM, Mendoza LH, Daly TJ, Hughes BJ, Youker KA, Hawkins HK, Michael LH, Rot A, Entman ML. 1995. Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 95:89–103.PubMedGoogle Scholar
  46. 46.
    Kukielka GL, Entman ML. ••. Adhesion molecule-dependent cardiovascular injury. In Poste G, Metcalf B (eds), Cellular Adhesion: Molecular Definition to Therapeutic Potential. New York: Plenum, pp. 187–212.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ryuichi Morishita
    • 1
  • Motokuni Aoki
    • 1
  • Hidetsugu Matsushita
    • 1
  • Yasufumi Kaneda
    • 1
  • Jitsuo Higaki
    • 1
  • Toshio Ogihara
    • 1
  1. 1.Osaka University Medical SchoolJapan

Personalised recommendations