Skip to main content

ATP-Sensitive Potassium Channels and Myocardial Ischemia

  • Chapter
The Ischemic Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 1))

  • 1698 Accesses

Abstract

The KATP channel plays an important role in mediating a variety of pathophysiological responses during myocardium ischemia and exhibits cardioprotective effects. As a consequence of the recent cloning of the subunits of the KATP, channel, efforts are being made to understand its properties, regulation, and physiological role in coupling the metabolic state of a cell to excitability. Advances are anticipated in the understanding of the cellular and molecular mechanisms underlying the role of the KATP channel during myocardial ischemia. The modulators of the KATP channel are of great value as therapeutic agents for the treatment of ischemic heart disease. Newly identified tissue-selective KATP channel openers may result in important advances in the treatment of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft FM, 1988. Adenosine 5′-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11:97–118.

    Article  PubMed  CAS  Google Scholar 

  2. Moma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148.

    Article  Google Scholar 

  3. Noma A, Shibasaki T. 1985. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363:463–480.

    PubMed  CAS  Google Scholar 

  4. Nichols CG, Lederer WJ. 1990. The regulation of ATP-sensitive K+ channel activity in intact and pemeabilized rat ventricular myocytes. J Physiol 423:91–110.

    PubMed  CAS  Google Scholar 

  5. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. 1989. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180.

    Article  PubMed  CAS  Google Scholar 

  6. Silberberg SD, Van Breemen C. 1990. An ATP, calcium and voltage sensitive potassium channel in porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun 172:517–522.

    Article  PubMed  CAS  Google Scholar 

  7. Nichols CG, Lederer WJ. 1991. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 261:H1675–H1686.

    PubMed  CAS  Google Scholar 

  8. Loptin AN, Makhina EN, Nichols CG. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369.

    Article  Google Scholar 

  9. Sturgess NC, Ashford ML, Carrington CA, Hales CN. 1986. Single channel recordings of potassium currents in an insulin-secreting cell line. J Endocrinol 109:201–207.

    PubMed  CAS  Google Scholar 

  10. Kakei M, Noma A, Shibasaki T. 1985. Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363:441–462.

    PubMed  CAS  Google Scholar 

  11. Rorsman P, Trube G. 1990. Biophysics and physiology of ATP-regulated K+ channels. In Cook N (ed), Potassium Channels. Chichester, UK: Ellis Horwood Limited, pp. 96–116.

    Google Scholar 

  12. Tung RT, Kurachi Y. 1991. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K+ channel in ventricular cell of guinea-pig. J Physiol 437:239–256.

    PubMed  CAS  Google Scholar 

  13. Findlay I, Dunne MJ. 1986, ATP maintains ATP-inhibited K+ channels in an operational state. Pflugers Arch 407:238–240.

    Article  PubMed  CAS  Google Scholar 

  14. Kakei M, Kelly RP, Ashcroft: SJ, Ashcroft: FM. 1986. The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett 208:63–66.

    Article  PubMed  CAS  Google Scholar 

  15. Light P. 1996. Regulation of ATP-sensitive potassium channels by phosphorylation. Biochim Biophys Acta 1286:65–73.

    PubMed  Google Scholar 

  16. Kakei M, Noma A. 1984. Adenosine-5′-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J Physiol 352:265–284.

    PubMed  CAS  Google Scholar 

  17. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. 1990. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  18. Weston AH, Edwards G. 1992. Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 43:47–54.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang C, Mochizuki S, Poole-Wilson PA, Harding SE, Macleod KT. 1994. Effect of lemakalim on action potentials, intracellular calcium, and contraction in guinea pig and human cardiac myocytes. Cardiovasc Res 28:851–857.

    PubMed  CAS  Google Scholar 

  20. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassiley PM, Kanazirska MV, Hebert SC. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38.

    Article  PubMed  CAS  Google Scholar 

  21. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. 1996. Inward rectification and implications for cardiac excitability. Circ Res 78:1–7.

    PubMed  CAS  Google Scholar 

  22. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV, Boyd AE III, Gonzalez G, HerreraSosa H, Nguy K, Nelson DA. 1995. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426.

    Article  PubMed  CAS  Google Scholar 

  23. Inagaki N, Gonoi T, Clement JP IV, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  24. Faivre JF, Findlay I. 1990. Action potential duration and activation of ATP-sensitive potassium current in isolated guinea-pig ventricular myocytes. Biochim Biophys Acta 1029:167–172.

    Article  PubMed  CAS  Google Scholar 

  25. Findlay I. 1988. Effects of ADP upon the ATP-sensitive K+ channel in rat ventricular myocytes. J Memb Biol 101:83–92.

    Article  CAS  Google Scholar 

  26. Nichols CG, Ripoll C, Lederer WJ. 1991. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Rec 68:280–287.

    CAS  Google Scholar 

  27. Clapp LW, Curney AM. 1992. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am J Physiol 262:W916–H920.

    Google Scholar 

  28. De Weille JR, Fosset M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M. 1989. Pharmacology and regulation of ATP-sensitive K+ channels. Pflugers Arch 414(Suppl 1):S80–S87.

    Article  PubMed  Google Scholar 

  29. Jiang C. 1993. The Regulatory Role of Adenosine 5′-Triphosphate-Sensitive Potassium Channels in Mammalian Cardiac Muscle and Coronary Smooth Muscle. Ph.D, thesis, Imperial College of Science, Technology, and Medicine, School of Medicine at the National Heart and Lung Institute, University of London, 1993.

    Google Scholar 

  30. Jiang C, Poole-Wilson PA, Collins P. 1991. Comparison of rabbit coronary arterial relaxation induced by acetylcholine and lemakalim: activation of ATP sensitive potassium channels. Cardiovasc Res 25:930–935.

    PubMed  CAS  Google Scholar 

  31. Miyoshi Y, Nakaya Y, Wakatsuki T, Nakaya S, Fujino K, Saito K, Inoue I. 1992. Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res 70:612–615.

    PubMed  CAS  Google Scholar 

  32. Weiss J, Hiltbrand B. 1985. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75:436–447.

    PubMed  CAS  Google Scholar 

  33. Elliott AC, Smith GL, Allen PG. 1989. Simultaneous measurements of action potential duration and intracellular ATP in isolated ferret hearts exposed to cyanide. Circ Res 64:583–591.

    PubMed  CAS  Google Scholar 

  34. Keung EC, Li Q. 1991. Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. J Clin Invest 88:1772–1777.

    PubMed  CAS  Google Scholar 

  35. Jiang C, Collins P. 1994. Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide. Br J Pharmacol 111:711–716.

    PubMed  CAS  Google Scholar 

  36. Jiang C, Crake T, Poole-Wilson PA. 1991. Inhibition by barium and glibenclamide of the net loss of 86Rb+ from rabbit myocardium during hypoxia. Cardiovasc Res 25:414–420.

    Article  PubMed  CAS  Google Scholar 

  37. Escande D, Henry P. 1993. Potassium channels as pharmacological targets in cardiovascular medicine. Eur Heart J 14(Suppl B):2–9.

    PubMed  CAS  Google Scholar 

  38. Auchampach JA, Maruyama M, Cavero I, Gross GJ. 1991, The new K+ channel opener Aprikalim (RP 52891) reduces experimental infarct size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Ther 259:961–967.

    PubMed  CAS  Google Scholar 

  39. Edwards G, Weston AH. 1990. Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther 48:237–258.

    Article  PubMed  CAS  Google Scholar 

  40. Daut J, Maier-Rudolph W, Beckerath N, Mehrke G, Gunter K, Goedel-Meinen L. 1990. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1342.

    Article  PubMed  CAS  Google Scholar 

  41. Kirsch GE, Codina J, Birnbaumer L, Brown AM. 1990. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826.

    PubMed  CAS  Google Scholar 

  42. Belloni FL, Hintze TH. 1991. Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilatation. Am J Physiol 261:H720–H727.

    PubMed  CAS  Google Scholar 

  43. Wei HM, Kang YH, Merrill GF. 1989. Canine coronary vasodepressor responses to hypoxia are abolished by 8-phenyltheophylline, Am J Physiol 257:H1043–H1048.

    PubMed  CAS  Google Scholar 

  44. Venkatesh N, Lamp ST, Weiss JN. 1991. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ Res 69:623–637.

    PubMed  CAS  Google Scholar 

  45. Kantor PF, Coetzee WA, Cameliet EE, Dennis SC, Opie LH. 1990. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulonylurea. Circ Res 66:478–485.

    PubMed  CAS  Google Scholar 

  46. Cole WC, McPherson CD, Sontag D. 1991 ATP regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69:571–581.

    PubMed  CAS  Google Scholar 

  47. Adams D, Crome R, Lad N, Manning AS, Mackenzie I. 1990. Failure of the ATP-dependent K+ channel inhibitor, glibenclamide, to reduce reperfusion-induced or ischemic arrhythmias in rat hearts. Br J Pharmacol 100(Suppl):438p.

    Google Scholar 

  48. Curtis MJ, Walker MJA. 1986. The mechanism of action of the optical enantiomers of verapamil against ischemia-induced arrhythmias in the conscious rat. Br J Pharmacol 89:137–147.

    PubMed  CAS  Google Scholar 

  49. Wilde AAM. 1993. Role of ATP-sensitive K+ channel current in ischemic arrhythmias. Cardiovasc Drugs Ther 7:521–526.

    Article  PubMed  Google Scholar 

  50. Murry CE, Jennings RB, Reimer U. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    PubMed  CAS  Google Scholar 

  51. Liu Y, Ytrehus K, Downey JM. 1994. Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol 26:661–668.

    Article  PubMed  CAS  Google Scholar 

  52. Gross GJ. 1995. ATP-sensitive potassium channels and myocardial preconditioning. Basic Res Cardiol 90:85–88.

    Article  PubMed  CAS  Google Scholar 

  53. Auchampach JA, Grover GJ, Gross GJ. 1992. Blockade of ischemic preconditioning in dogs by the novel ATP-dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  54. Tomai F, Crea F, Caspardone A, Versaci F, Depaulis R, Penta de Peppo A, Chiaririe L, Gioffre’ PA. 1994. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 90:700–705.

    PubMed  CAS  Google Scholar 

  55. Atwal KS. 1994. Pharmacology and structure-activity relationships for KATP modulators: tissue-selective KATP openers. J Cardiovasc Pharmacol 24:S12–S17.

    Article  PubMed  CAS  Google Scholar 

  56. Knight C, Purcell H, Fox K. 1995. Potassium channel openers: clinical application in ischemic heart disease—overview of clinical efficacy of nicorandil. Cardiovasc Drugs Ther 9:229–236.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jiang, C., Poole-Wilson, P.A., Mochizuki, S. (1998). ATP-Sensitive Potassium Channels and Myocardial Ischemia. In: Mochizuki, S., Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Ischemic Heart. Progress in Experimental Cardiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-39844-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-39844-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8105-1

  • Online ISBN: 978-0-585-39844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics