The Source and Fate of Protons in the Reperfused Ischemic Heart

  • Gary D. Lopaschuk
  • Alexander S. Clanachan
Part of the Progress in Experimental Cardiology book series (PREC, volume 1)


Metabolic modulation (i.e., optimizing the energy substrate preference by the heart during and following ischemia) is an exciting new approach to treating ischemic heart disease. However, the relationship between glucose metabolism and alterations in proton production and clearance during and following ischemia remains poorly understood. It is clear, however, that the recovery of mechanical function and cardiac efficiency in the reperfused postischemic heart is influenced by both the source and fate of protons. Inhibition of the source of protons during ischemia and/or reperfusion by improving the coupling between glycolysis and glucose oxidation will increase the rate of recovery of pHi and improve recovery of mechanical function and efficiency. Modulation of the fate of protons will also affect pHi, but the consequences on function and efliciency will depend on the specific pathway by which the protons are cleared.


Fatty Acid Oxidation Glucose Oxidation Proton Production Cardiac Efficiency Reperfused Ischemic Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tani M, Neely JR. 1989. Role of intracellular Na+ and Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circulation 65:1045–1056.Google Scholar
  2. 2.
    Meng HP, Pierce GN. 1990. Protective effect of 5-(N,N-dimethyl)amiloride on ischemia-reperfusion injury in hearts. Am J Physiol 258:H1615–H1619.PubMedGoogle Scholar
  3. 3.
    Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Scholekens BA. 1992. Effects of Na+/H+ exchange inhibitors in cardiac ischemia. J Mol Cell Cardiol 24:731–740.PubMedCrossRefGoogle Scholar
  4. 4.
    Pierce GN, Cole WC, Liu K, Massaeli H, Maddaford TG, Chen YJ, McPherson CD, Jain S, Sontag D. 1993. Modulation of cardiac performance by amiloride and several selected derivatives of amiloride. J Phamacol Exp Ther 264:1280–1291.Google Scholar
  5. 5.
    Meng HP, Maddaford TG, Pierce GN. 1993. Effect of amiloride and selected analogues on postischemic recovery of cardiac contractile function. Am J Physiol 264:H1831–H1835.PubMedGoogle Scholar
  6. 6.
    Moffat MP, Karmazyn N. 1993. Protective effects of the potent Na/H exchange inhibitor methylisobutyl amiloride against post-ischemic contractile dysfunction in rat and guinea-pig hearts. J Mol Cell Cardiol 25:959–971.PubMedCrossRefGoogle Scholar
  7. 7.
    Myers ML, Mathur S, Li GH, Karmazyn M. 1995. Sodium-hydrogen exchange inhibitors improve postischemic recovery of function in perfused rabbit heart. Cardiovasc Res 29:209–214.PubMedCrossRefGoogle Scholar
  8. 8.
    Vandenburg JI, Metcalfe JC, Grace AA. 1993. Mechanisms for pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003.Google Scholar
  9. 9.
    Grace AA, Kirschenlor HL, Metcalfe JC, Smith GA, Weissberg PL, Cragoe EJ Jr, Vandenberg JI. 1993. Regulation of intracellular pHi in the perfused heart by external HCO3-and Na(+)-H+ exchange. Am J Physiol 265:H289–H298.PubMedGoogle Scholar
  10. 10.
    Xu P, Spitzer KW. 1994. Na-independent Cl(-)-HCO3-exchange mediates recovery of pHi from alkalosis in guinea pig ventricular myocytes. Am J Physiol 267:H85–H91.PubMedGoogle Scholar
  11. 11.
    Kusuoka H, Marban E, Cingolani HE. 1994. Control of steady-state intracellular pH in intact perfused ferret hearts. J Mol Cell Cardiol 26:821–829.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamazyn M, Moffat MP. 1993. Role of Na+/H+-exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27:915–924.Google Scholar
  13. 13.
    Pierce GN, Czubryt MP. 1993. The contribution of ionic imbalance to ischemia/reperfiusion-induced injury. J Mol Cell Cardiol 27:53–63.Google Scholar
  14. 14.
    Khandoudi N, Bernard M, Cozzone P, Feuvray D. 1995. Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 44:196–202.PubMedCrossRefGoogle Scholar
  15. 15.
    Lopaschuk GD, Wambolt RB, Barr RL. 1993. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264:135–144.PubMedGoogle Scholar
  16. 16.
    McVeigh JJ, Lopaschuk GD. 1990. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 259:H1079–H1085.PubMedGoogle Scholar
  17. 17.
    Lui B, El Alaoui-talibi Z, Clanachan AS, Schulz R, Lopaschuk GD. 1996. Uncoupling of contractile function from mitochondrial tricarboxylic acid cycle activity and oxygen consumption during reperfusion of ischemic rat hearts. Am J Physiol 270:HH72–H80.Google Scholar
  18. 18.
    Lopaschuk GD, Belke DB, Gamble J, Itoi T, Schonekess BO. 1994. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276.PubMedGoogle Scholar
  19. 19.
    Finegan BA, Lopaschuk GD, Coulson CS, Clanachan AS. 1993. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circulation 87:900–908.PubMedGoogle Scholar
  20. 20.
    Finegan BA, Lopaschuk GD, Ghandi M, Clanachan AS. 1995. Ischemic preconditioning inhibits glycolysis and proton production during ischemia and reperfusion in working rat hearts. Am J Physiol 269:H1767–H1775.PubMedGoogle Scholar
  21. 21.
    Liu B, Clanchan AS, Schulz R, Lopaschuk GD. 1996. Cardiac efficiency is improved following ischemia by altering both the source and fate of protons. Circ Res 79:940–948.PubMedGoogle Scholar
  22. 22.
    Finegan BA, Clanachan AS, Coulson CS, Lopaschuk GD. 1992. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Am J Physiol 262:H1501–H1507.PubMedGoogle Scholar
  23. 23.
    Clanachan AS, Lopaschuk GD, Gandhi M, Finegan BA. 1996. Adenosine A1 receptor stimulation during reperfusion inhibits glycolysis and enhances recovery of mechanical function of working rat hearts following ischaemia. Br J Pharmacol 118:355–363.PubMedGoogle Scholar
  24. 24.
    Lopaschuk GD, Collins-Nakai R, Olley PM, Montague TJ, McNeil G, Gayle M, Penkoske P, Finegan BA. 1994. Plasm fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 128:61–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Oliver MF, Kurien VA, Greenwood TW. 1968, Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet 1:710–714.PubMedCrossRefGoogle Scholar
  26. 26.
    Neely JR, Morgan HE. 1974. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart. Annu Rev Physiol 36:413–459.CrossRefPubMedGoogle Scholar
  27. 27.
    Opie LH. 1991. Carbohydrates and lipids. In Opie LH (ed), The Heart. Physiology and Metabolism, 2nd ed. New York: Raven Press, pp. 208–246.Google Scholar
  28. 28.
    Saddik M, Lopaschuk GD. 1991. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170PubMedGoogle Scholar
  29. 29.
    Pate1 MS, Roche TE. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 4:3224–3233.Google Scholar
  30. 30.
    Owen P, Dennis S, Opie LH. 1990. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res 66:344–354.PubMedGoogle Scholar
  31. 31.
    Neely JR, Grotyohann LW. 1984. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine trihosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824.PubMedGoogle Scholar
  32. 32.
    Zimmer SD, Ugurbil K, Michurski SP, Mohanakrishnan P, Ulstad VK, Foker JE, From AH. 1989. Alterations in oxidative function and respiratory regulation in the post-ischemic myocardium. J Biol Chem 264:12402–12411.PubMedGoogle Scholar
  33. 33.
    Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. 1990. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553.PubMedGoogle Scholar
  34. 34.
    Benzi RH, Lerch R. 1992. Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71:567–576.PubMedGoogle Scholar
  35. 35.
    Liedtke AJ, Nellis S, Neely JR. 1978. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 43:652–661.PubMedGoogle Scholar
  36. 36.
    Liedtke AJ, Demaison L, Eggleston AM, Cohen LM, Nellis SH. 1988. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542.PubMedGoogle Scholar
  37. 37.
    Lopaschuk GD, Wall SR, Olley PM, Davies NJ. 1988. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 63:1036–1043.PubMedGoogle Scholar
  38. 38.
    Opie LH, 1969. Metabolism of the heart in health and disease. II. Am Heart J 77:100–122.PubMedCrossRefGoogle Scholar
  39. 39.
    Renstrom B, Nellis SH, Liedtke AJ. 1989. Metabolic oxidation of glucose during early myocardial reperfusion. Circ Res 65:1094–1101.PubMedGoogle Scholar
  40. 40.
    Saddik M, Lopaschuk GD. 1992. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267:3825–3831.PubMedGoogle Scholar
  41. 41.
    McGarry JD, Woeltje KF, Kuwajima M, Foster DW. 1989. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 5:271–284.PubMedGoogle Scholar
  42. 42.
    Saddik M, Gamble J, Witters LA, Lopaschuk GD. 1993. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 268:25836–25845.PubMedGoogle Scholar
  43. 43.
    Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. 1994. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269:25871–25878.PubMedGoogle Scholar
  44. 44.
    Lopaschuk GD, Gamble J. 1994. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Phamcol 72:1101–1109.Google Scholar
  45. 45.
    Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. 1995. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520.PubMedCrossRefGoogle Scholar
  46. 46.
    Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. 1996. Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301:67–75.PubMedGoogle Scholar
  47. 47.
    Hardie GD. 1989. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res 28:117–146.PubMedCrossRefGoogle Scholar
  48. 48.
    Dennis SC, Gevers W, Opie LH. 1991. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23:1077–1086.PubMedCrossRefGoogle Scholar
  49. 49.
    Laster SB, Becker LC, Ambrosio G, Jacobus WE. 1989. Reduced aerobic metabolic efficiency in globally “stunned” myocardium. J Mol Cell Cardiol 21:419–426.PubMedCrossRefGoogle Scholar
  50. 50.
    Furukawa S, Kreiner G, Bavaria JE, Streicher JT, Edmunds LHJ. 1991. Recovery of oxygen utilization efficiency after global myocardial ischemia. Ann Thorac Surg 52:1063–1068.PubMedCrossRefGoogle Scholar
  51. 51.
    Racy-Burns LA, Burns AH, Summer WR, Shepherd RE. 1989. The effect of dichloroacetate on the isolated no flow arrested rat heart. Life Sci 44:2015–2023.CrossRefGoogle Scholar
  52. 52.
    Wahr JA, Childs KF, Bolling SF. 1994. Dichloroacetate enhances myocardial functions and metabolic recovery following global ischemia. J Cardiothorac Vasc Anesth 8:192–197.PubMedCrossRefGoogle Scholar
  53. 53.
    Wargovich TJ, Macdonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. 1988. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol 61:65–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Bershin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, Khorrami P, Henderson GN, de Marco T, Chatterjee K. 1994. Improved hemodynamic function and mechanical efficiency in congestive heart failure with dichloroacetate. J Am Coll Cardiol 23:1617–1624.CrossRefGoogle Scholar
  55. 55.
    Collins-Nakai RL, Suarex-Almazor M, Karmy-Jones R, Penkoske P, Teo K, Lopaschuk GD. 1995. Dichloracetic acid (DCA) after open heart surgery in infants and children (abstract). Can J Cardiol 11:106E.Google Scholar
  56. 56.
    Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. 1993. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused afiter a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87:972–981.PubMedGoogle Scholar
  57. 57.
    Broderick TL, Quinney HA, Lopaschuk GD. 1992. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 267:3758–3763.PubMedGoogle Scholar
  58. 58.
    Ferrari R, Cucchini F, Visioli O. 1984. The metabolic effects of L-carnitine in angina pectoris. Intern J Cardiol 5:213–216.CrossRefGoogle Scholar
  59. 59.
    Iliceto S, Scrutinio D, Bruzzi P, D’ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz PG, Rizzon P. 1995. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-carnitine ecocardiografia digitalizzata infarto miocardico (CEDIM) trial. J Am Coll Cardiol 26:380–387.PubMedCrossRefGoogle Scholar
  60. 60.
    Ghidini O, Azzurro M, Vita G, Sartori G. 1988. Evaluation of the therapeutic efficacy of L-carnitine in congestive heart failure. Int J Clin Pharmacol Ther Toxicol 26:218–220.Google Scholar
  61. 61.
    Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer RM Jr. 1989. Adenosine stimulates glycolytic flux in isolated perfused rat hearts by A1-adenosine receptors. Am J Physiol 257:H1952–H1957.PubMedGoogle Scholar
  62. 62.
    Buxton DB, Kjaer Pedersen K, Nguyen A. 1992. Metabolic effects of adenosine in the isolated perfused rat heart. J Mol Cell Cardiol 24:173–181.PubMedCrossRefGoogle Scholar
  63. 63.
    Janier MF, Vanoverschelde JL, Bergmann SR. 1993. Adenosine protects ischemic and reperfused myocardium by receptor-mediated mechanisms. Am J Physiol 264:H163–H170.PubMedGoogle Scholar
  64. 64.
    Vander Heide RS, Reimer KA, Jennings RB. 1993. Adenosine slows ischaemic metabolism in canine myocardium in vitro: relationship to ischaemic preconditioning. Cardiovasc Res 27:669–673.CrossRefGoogle Scholar
  65. 65.
    McCormack JG, Barr RL, Lopaschuk GD. 1996. Ranolazine stimulates glucose oxidation in normoxic, ischemic and reperfused ischemic rat hearts. Circulation 93:135–142.PubMedGoogle Scholar
  66. 66.
    McCormack JG, Baracos VE, Lopaschuk GD. 1996. Effects of ranolazine on oxidative substrate preference in epitrochlearis muscle. J Appl Physiol 81:905–910.PubMedGoogle Scholar
  67. 67.
    Cocco G, Rousseau MF, Bouvy T, Cheron P, Williams G, Detry JM, Pouleur H. 1992. Effects of a new metabolic modulator, ranolazine, on exercise tolerance in angina pectoris patients treated with β-blocker or diltiazem. J Cardiovasc Pharmacol 20:131–138.PubMedCrossRefGoogle Scholar
  68. 68.
    Bouvy T, Rousseau MF, Cocco G, Cheron P, William GJ, Detry JMR. 1993. Improvement in exercise tolerance and left ventricular filling dynamics in patients with angina pectoris with the novel metabolic modulator, ranolazine. Acta Cardiol 48:98–99.Google Scholar
  69. 69.
    Kober G, Buck T, Sievert H, Vallbracht C. 1992. Myocardial protection during percutaneous transluminal coronary angioplasty: effects of trimetazidine. Eur Heart J 82:1109–1115.Google Scholar
  70. 70.
    Syntex Research brochure for investigational studies.Google Scholar
  71. 71.
    Detry JM, Sellier P, Pennaforte S, Cokkinos D, Dargie H, Mathies P. 1994. Trimetazidine: a new concept in the treatment of angina. Comparison with propranalol in patients with stable angina. Br J Clin Pharmacol 37:279–288.PubMedGoogle Scholar
  72. 72.
    Harpey C, Clauser P, Labrid C, Freyria JL, Poirier JP. 1989. Trimetazidine, a cellular antiischemic agent. Cardiovasc Drug Rev 6:292–312.CrossRefGoogle Scholar
  73. 73.
    Puceat M, Vassort G. 1995. Neurohumoral modulation of intracellular pH in the heart. Cardiovasc Res 29:178–183.PubMedCrossRefGoogle Scholar
  74. 74.
    Puceat M, Clement-Chomienne O, Terzic A, Vassort G. 1993. Alpha 1-adrenoceptor and purinergic agonists modulate Na-HJ-antiport in single cardiac cells. Am J Physiol 264:H310–H319.PubMedGoogle Scholar
  75. 75.
    Matsui H, Barry WH, Livsey C, Spitzer KW. 1995. Angiotension II stimulates sodium—hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res 29:215–221.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang X, Levi AJ, Halestrap AP. 1994. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. AmJ Physiol 267:H1759–1769.Google Scholar
  77. 77.
    Liu B, Clanachan AS, Schulz R, Lopaschuck GD. 1997. Manuscript in preparation.Google Scholar
  78. 78.
    Linn SC, Askew GR, Menon AG, Shull GE. 1995. Conservation of an AE3 Cl-/HCO3-exchanger cardiac-specific exon and promoter region and AE3 mRNA expression patterns in murine and human hearts. Circ Res 76:584–591.PubMedGoogle Scholar
  79. 79.
    Linn SC, Kudrycki KE, Shull GE. 1992. The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 Cl-/HCO3-exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem 267:7927–7935.PubMedGoogle Scholar
  80. 80.
    Puceat M, Korichneva I, Cassoly R, Vassort G. 1995. Identification of band 3-like proteins and Cl-/HCO3-exchange in isolated cardiomyocytes. J Biol Chem 270:1315–1322.PubMedCrossRefGoogle Scholar
  81. 81.
    Korichneva I, Puceat M, Cassoly R, Vassort G. 1995. Cl-HCO3-exchange in developing neonatal rat cardiac cells. Biochemical differentiation and imunolocalization of band 3-like proteins. Circ Res 77:556–564.PubMedGoogle Scholar
  82. 82.
    Hata K, Takasago T, Saeki A, Nishioka T, Goto Y. 1994. Stunned myocardium after rapid correction of acidosis. Increased oxygen cost of contractility and the role of the Na(+)-H+ exchange system. Circ Res 74:794–805.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Gary D. Lopaschuk
    • 1
  • Alexander S. Clanachan
    • 1
  1. 1.Cardiovascular Disease Research GroupUniversity of AlbertaCanada

Personalised recommendations