Skip to main content

The Source and Fate of Protons in the Reperfused Ischemic Heart

  • Chapter
The Ischemic Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 1))

  • 1705 Accesses

Abstract

Metabolic modulation (i.e., optimizing the energy substrate preference by the heart during and following ischemia) is an exciting new approach to treating ischemic heart disease. However, the relationship between glucose metabolism and alterations in proton production and clearance during and following ischemia remains poorly understood. It is clear, however, that the recovery of mechanical function and cardiac efficiency in the reperfused postischemic heart is influenced by both the source and fate of protons. Inhibition of the source of protons during ischemia and/or reperfusion by improving the coupling between glycolysis and glucose oxidation will increase the rate of recovery of pHi and improve recovery of mechanical function and efficiency. Modulation of the fate of protons will also affect pHi, but the consequences on function and efliciency will depend on the specific pathway by which the protons are cleared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tani M, Neely JR. 1989. Role of intracellular Na+ and Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circulation 65:1045–1056.

    CAS  Google Scholar 

  2. Meng HP, Pierce GN. 1990. Protective effect of 5-(N,N-dimethyl)amiloride on ischemia-reperfusion injury in hearts. Am J Physiol 258:H1615–H1619.

    PubMed  CAS  Google Scholar 

  3. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Scholekens BA. 1992. Effects of Na+/H+ exchange inhibitors in cardiac ischemia. J Mol Cell Cardiol 24:731–740.

    Article  PubMed  CAS  Google Scholar 

  4. Pierce GN, Cole WC, Liu K, Massaeli H, Maddaford TG, Chen YJ, McPherson CD, Jain S, Sontag D. 1993. Modulation of cardiac performance by amiloride and several selected derivatives of amiloride. J Phamacol Exp Ther 264:1280–1291.

    Google Scholar 

  5. Meng HP, Maddaford TG, Pierce GN. 1993. Effect of amiloride and selected analogues on postischemic recovery of cardiac contractile function. Am J Physiol 264:H1831–H1835.

    PubMed  CAS  Google Scholar 

  6. Moffat MP, Karmazyn N. 1993. Protective effects of the potent Na/H exchange inhibitor methylisobutyl amiloride against post-ischemic contractile dysfunction in rat and guinea-pig hearts. J Mol Cell Cardiol 25:959–971.

    Article  PubMed  CAS  Google Scholar 

  7. Myers ML, Mathur S, Li GH, Karmazyn M. 1995. Sodium-hydrogen exchange inhibitors improve postischemic recovery of function in perfused rabbit heart. Cardiovasc Res 29:209–214.

    Article  PubMed  CAS  Google Scholar 

  8. Vandenburg JI, Metcalfe JC, Grace AA. 1993. Mechanisms for pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003.

    Google Scholar 

  9. Grace AA, Kirschenlor HL, Metcalfe JC, Smith GA, Weissberg PL, Cragoe EJ Jr, Vandenberg JI. 1993. Regulation of intracellular pHi in the perfused heart by external HCO3-and Na(+)-H+ exchange. Am J Physiol 265:H289–H298.

    PubMed  CAS  Google Scholar 

  10. Xu P, Spitzer KW. 1994. Na-independent Cl(-)-HCO3-exchange mediates recovery of pHi from alkalosis in guinea pig ventricular myocytes. Am J Physiol 267:H85–H91.

    PubMed  CAS  Google Scholar 

  11. Kusuoka H, Marban E, Cingolani HE. 1994. Control of steady-state intracellular pH in intact perfused ferret hearts. J Mol Cell Cardiol 26:821–829.

    Article  PubMed  CAS  Google Scholar 

  12. Kamazyn M, Moffat MP. 1993. Role of Na+/H+-exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27:915–924.

    Google Scholar 

  13. Pierce GN, Czubryt MP. 1993. The contribution of ionic imbalance to ischemia/reperfiusion-induced injury. J Mol Cell Cardiol 27:53–63.

    Google Scholar 

  14. Khandoudi N, Bernard M, Cozzone P, Feuvray D. 1995. Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 44:196–202.

    Article  PubMed  CAS  Google Scholar 

  15. Lopaschuk GD, Wambolt RB, Barr RL. 1993. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264:135–144.

    PubMed  CAS  Google Scholar 

  16. McVeigh JJ, Lopaschuk GD. 1990. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 259:H1079–H1085.

    PubMed  CAS  Google Scholar 

  17. Lui B, El Alaoui-talibi Z, Clanachan AS, Schulz R, Lopaschuk GD. 1996. Uncoupling of contractile function from mitochondrial tricarboxylic acid cycle activity and oxygen consumption during reperfusion of ischemic rat hearts. Am J Physiol 270:HH72–H80.

    Google Scholar 

  18. Lopaschuk GD, Belke DB, Gamble J, Itoi T, Schonekess BO. 1994. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276.

    PubMed  CAS  Google Scholar 

  19. Finegan BA, Lopaschuk GD, Coulson CS, Clanachan AS. 1993. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circulation 87:900–908.

    PubMed  CAS  Google Scholar 

  20. Finegan BA, Lopaschuk GD, Ghandi M, Clanachan AS. 1995. Ischemic preconditioning inhibits glycolysis and proton production during ischemia and reperfusion in working rat hearts. Am J Physiol 269:H1767–H1775.

    PubMed  CAS  Google Scholar 

  21. Liu B, Clanchan AS, Schulz R, Lopaschuk GD. 1996. Cardiac efficiency is improved following ischemia by altering both the source and fate of protons. Circ Res 79:940–948.

    PubMed  CAS  Google Scholar 

  22. Finegan BA, Clanachan AS, Coulson CS, Lopaschuk GD. 1992. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Am J Physiol 262:H1501–H1507.

    PubMed  CAS  Google Scholar 

  23. Clanachan AS, Lopaschuk GD, Gandhi M, Finegan BA. 1996. Adenosine A1 receptor stimulation during reperfusion inhibits glycolysis and enhances recovery of mechanical function of working rat hearts following ischaemia. Br J Pharmacol 118:355–363.

    PubMed  Google Scholar 

  24. Lopaschuk GD, Collins-Nakai R, Olley PM, Montague TJ, McNeil G, Gayle M, Penkoske P, Finegan BA. 1994. Plasm fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 128:61–67.

    Article  PubMed  CAS  Google Scholar 

  25. Oliver MF, Kurien VA, Greenwood TW. 1968, Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet 1:710–714.

    Article  PubMed  CAS  Google Scholar 

  26. Neely JR, Morgan HE. 1974. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart. Annu Rev Physiol 36:413–459.

    Article  CAS  PubMed  Google Scholar 

  27. Opie LH. 1991. Carbohydrates and lipids. In Opie LH (ed), The Heart. Physiology and Metabolism, 2nd ed. New York: Raven Press, pp. 208–246.

    Google Scholar 

  28. Saddik M, Lopaschuk GD. 1991. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170

    PubMed  CAS  Google Scholar 

  29. Pate1 MS, Roche TE. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 4:3224–3233.

    Google Scholar 

  30. Owen P, Dennis S, Opie LH. 1990. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res 66:344–354.

    PubMed  CAS  Google Scholar 

  31. Neely JR, Grotyohann LW. 1984. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine trihosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824.

    PubMed  CAS  Google Scholar 

  32. Zimmer SD, Ugurbil K, Michurski SP, Mohanakrishnan P, Ulstad VK, Foker JE, From AH. 1989. Alterations in oxidative function and respiratory regulation in the post-ischemic myocardium. J Biol Chem 264:12402–12411.

    PubMed  CAS  Google Scholar 

  33. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. 1990. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553.

    PubMed  CAS  Google Scholar 

  34. Benzi RH, Lerch R. 1992. Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71:567–576.

    PubMed  CAS  Google Scholar 

  35. Liedtke AJ, Nellis S, Neely JR. 1978. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 43:652–661.

    PubMed  CAS  Google Scholar 

  36. Liedtke AJ, Demaison L, Eggleston AM, Cohen LM, Nellis SH. 1988. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542.

    PubMed  CAS  Google Scholar 

  37. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. 1988. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 63:1036–1043.

    PubMed  CAS  Google Scholar 

  38. Opie LH, 1969. Metabolism of the heart in health and disease. II. Am Heart J 77:100–122.

    Article  PubMed  CAS  Google Scholar 

  39. Renstrom B, Nellis SH, Liedtke AJ. 1989. Metabolic oxidation of glucose during early myocardial reperfusion. Circ Res 65:1094–1101.

    PubMed  CAS  Google Scholar 

  40. Saddik M, Lopaschuk GD. 1992. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267:3825–3831.

    PubMed  CAS  Google Scholar 

  41. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. 1989. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 5:271–284.

    PubMed  CAS  Google Scholar 

  42. Saddik M, Gamble J, Witters LA, Lopaschuk GD. 1993. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 268:25836–25845.

    PubMed  CAS  Google Scholar 

  43. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. 1994. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269:25871–25878.

    PubMed  CAS  Google Scholar 

  44. Lopaschuk GD, Gamble J. 1994. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Phamcol 72:1101–1109.

    CAS  Google Scholar 

  45. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. 1995. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520.

    Article  PubMed  CAS  Google Scholar 

  46. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. 1996. Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301:67–75.

    PubMed  Google Scholar 

  47. Hardie GD. 1989. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res 28:117–146.

    Article  PubMed  CAS  Google Scholar 

  48. Dennis SC, Gevers W, Opie LH. 1991. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  49. Laster SB, Becker LC, Ambrosio G, Jacobus WE. 1989. Reduced aerobic metabolic efficiency in globally “stunned” myocardium. J Mol Cell Cardiol 21:419–426.

    Article  PubMed  CAS  Google Scholar 

  50. Furukawa S, Kreiner G, Bavaria JE, Streicher JT, Edmunds LHJ. 1991. Recovery of oxygen utilization efficiency after global myocardial ischemia. Ann Thorac Surg 52:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  51. Racy-Burns LA, Burns AH, Summer WR, Shepherd RE. 1989. The effect of dichloroacetate on the isolated no flow arrested rat heart. Life Sci 44:2015–2023.

    Article  Google Scholar 

  52. Wahr JA, Childs KF, Bolling SF. 1994. Dichloroacetate enhances myocardial functions and metabolic recovery following global ischemia. J Cardiothorac Vasc Anesth 8:192–197.

    Article  PubMed  CAS  Google Scholar 

  53. Wargovich TJ, Macdonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. 1988. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol 61:65–70.

    Article  PubMed  CAS  Google Scholar 

  54. Bershin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, Khorrami P, Henderson GN, de Marco T, Chatterjee K. 1994. Improved hemodynamic function and mechanical efficiency in congestive heart failure with dichloroacetate. J Am Coll Cardiol 23:1617–1624.

    Article  Google Scholar 

  55. Collins-Nakai RL, Suarex-Almazor M, Karmy-Jones R, Penkoske P, Teo K, Lopaschuk GD. 1995. Dichloracetic acid (DCA) after open heart surgery in infants and children (abstract). Can J Cardiol 11:106E.

    Google Scholar 

  56. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. 1993. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused afiter a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87:972–981.

    PubMed  CAS  Google Scholar 

  57. Broderick TL, Quinney HA, Lopaschuk GD. 1992. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 267:3758–3763.

    PubMed  CAS  Google Scholar 

  58. Ferrari R, Cucchini F, Visioli O. 1984. The metabolic effects of L-carnitine in angina pectoris. Intern J Cardiol 5:213–216.

    Article  CAS  Google Scholar 

  59. Iliceto S, Scrutinio D, Bruzzi P, D’ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz PG, Rizzon P. 1995. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-carnitine ecocardiografia digitalizzata infarto miocardico (CEDIM) trial. J Am Coll Cardiol 26:380–387.

    Article  PubMed  CAS  Google Scholar 

  60. Ghidini O, Azzurro M, Vita G, Sartori G. 1988. Evaluation of the therapeutic efficacy of L-carnitine in congestive heart failure. Int J Clin Pharmacol Ther Toxicol 26:218–220.

    Google Scholar 

  61. Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer RM Jr. 1989. Adenosine stimulates glycolytic flux in isolated perfused rat hearts by A1-adenosine receptors. Am J Physiol 257:H1952–H1957.

    PubMed  CAS  Google Scholar 

  62. Buxton DB, Kjaer Pedersen K, Nguyen A. 1992. Metabolic effects of adenosine in the isolated perfused rat heart. J Mol Cell Cardiol 24:173–181.

    Article  PubMed  CAS  Google Scholar 

  63. Janier MF, Vanoverschelde JL, Bergmann SR. 1993. Adenosine protects ischemic and reperfused myocardium by receptor-mediated mechanisms. Am J Physiol 264:H163–H170.

    PubMed  CAS  Google Scholar 

  64. Vander Heide RS, Reimer KA, Jennings RB. 1993. Adenosine slows ischaemic metabolism in canine myocardium in vitro: relationship to ischaemic preconditioning. Cardiovasc Res 27:669–673.

    Article  Google Scholar 

  65. McCormack JG, Barr RL, Lopaschuk GD. 1996. Ranolazine stimulates glucose oxidation in normoxic, ischemic and reperfused ischemic rat hearts. Circulation 93:135–142.

    PubMed  CAS  Google Scholar 

  66. McCormack JG, Baracos VE, Lopaschuk GD. 1996. Effects of ranolazine on oxidative substrate preference in epitrochlearis muscle. J Appl Physiol 81:905–910.

    PubMed  CAS  Google Scholar 

  67. Cocco G, Rousseau MF, Bouvy T, Cheron P, Williams G, Detry JM, Pouleur H. 1992. Effects of a new metabolic modulator, ranolazine, on exercise tolerance in angina pectoris patients treated with β-blocker or diltiazem. J Cardiovasc Pharmacol 20:131–138.

    Article  PubMed  CAS  Google Scholar 

  68. Bouvy T, Rousseau MF, Cocco G, Cheron P, William GJ, Detry JMR. 1993. Improvement in exercise tolerance and left ventricular filling dynamics in patients with angina pectoris with the novel metabolic modulator, ranolazine. Acta Cardiol 48:98–99.

    Google Scholar 

  69. Kober G, Buck T, Sievert H, Vallbracht C. 1992. Myocardial protection during percutaneous transluminal coronary angioplasty: effects of trimetazidine. Eur Heart J 82:1109–1115.

    Google Scholar 

  70. Syntex Research brochure for investigational studies.

    Google Scholar 

  71. Detry JM, Sellier P, Pennaforte S, Cokkinos D, Dargie H, Mathies P. 1994. Trimetazidine: a new concept in the treatment of angina. Comparison with propranalol in patients with stable angina. Br J Clin Pharmacol 37:279–288.

    PubMed  CAS  Google Scholar 

  72. Harpey C, Clauser P, Labrid C, Freyria JL, Poirier JP. 1989. Trimetazidine, a cellular antiischemic agent. Cardiovasc Drug Rev 6:292–312.

    Article  Google Scholar 

  73. Puceat M, Vassort G. 1995. Neurohumoral modulation of intracellular pH in the heart. Cardiovasc Res 29:178–183.

    Article  PubMed  CAS  Google Scholar 

  74. Puceat M, Clement-Chomienne O, Terzic A, Vassort G. 1993. Alpha 1-adrenoceptor and purinergic agonists modulate Na-HJ-antiport in single cardiac cells. Am J Physiol 264:H310–H319.

    PubMed  CAS  Google Scholar 

  75. Matsui H, Barry WH, Livsey C, Spitzer KW. 1995. Angiotension II stimulates sodium—hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res 29:215–221.

    Article  PubMed  CAS  Google Scholar 

  76. Wang X, Levi AJ, Halestrap AP. 1994. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. AmJ Physiol 267:H1759–1769.

    CAS  Google Scholar 

  77. Liu B, Clanachan AS, Schulz R, Lopaschuck GD. 1997. Manuscript in preparation.

    Google Scholar 

  78. Linn SC, Askew GR, Menon AG, Shull GE. 1995. Conservation of an AE3 Cl-/HCO3-exchanger cardiac-specific exon and promoter region and AE3 mRNA expression patterns in murine and human hearts. Circ Res 76:584–591.

    PubMed  CAS  Google Scholar 

  79. Linn SC, Kudrycki KE, Shull GE. 1992. The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 Cl-/HCO3-exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem 267:7927–7935.

    PubMed  CAS  Google Scholar 

  80. Puceat M, Korichneva I, Cassoly R, Vassort G. 1995. Identification of band 3-like proteins and Cl-/HCO3-exchange in isolated cardiomyocytes. J Biol Chem 270:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  81. Korichneva I, Puceat M, Cassoly R, Vassort G. 1995. Cl-HCO3-exchange in developing neonatal rat cardiac cells. Biochemical differentiation and imunolocalization of band 3-like proteins. Circ Res 77:556–564.

    PubMed  CAS  Google Scholar 

  82. Hata K, Takasago T, Saeki A, Nishioka T, Goto Y. 1994. Stunned myocardium after rapid correction of acidosis. Increased oxygen cost of contractility and the role of the Na(+)-H+ exchange system. Circ Res 74:794–805.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lopaschuk, G.D., Clanachan, A.S. (1998). The Source and Fate of Protons in the Reperfused Ischemic Heart. In: Mochizuki, S., Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Ischemic Heart. Progress in Experimental Cardiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-39844-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-39844-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8105-1

  • Online ISBN: 978-0-585-39844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics