The molecular biology of acute promyelocytic leukemia

  • James L. Slack
  • Robert E. Gallagher
Part of the Cancer Treatment and Research book series (CTAR, volume 99)


In this chapter, our goal is to review and summarize current knowledge of the molecular biology of acute promyelocytic leukemia (APL). The cure of up to 75% of patients with APL [1,2] represents a remarkable and fascinating success story in medicine, and the treatment of APL with retinoic acid serves as a paradigm for the use of differentiation therapy in other types of human cancers. The high cure rate of APL is due in part to the extreme sensitivity of leukemic promyelocytes to the differentiating effects of the vitamin A derivative all -trans retinoic acid (ATRA), and it thus becomes critical to delineate the mechanisms by which APL cells respond to this and other retinoids. As discussed in detail below, the defining molecular aberration in APL is disruption of the alpha receptor for retinoic acid, RARα, and its reciprocal in-frame fusion with one of four partner genes (Table 1). As will become clear in this chapter, these fusion proteins, while they lack classic transforming activity, nevertheless have the capacity to disrupt hematopoiesis and effectively inactivate the molecular switch that governs promyelocytic maturation. Our focus here will thus be on the structure and function of the four fusion genes involved in APL pathogenesis, and on the mechanisms by which APL cells are sensitive to, and in some cases become resistant to, retinoids. It is hoped that a full understanding of the structure and function of these fusion molecules will provide a conceptual framework for a fuller understanding of the molecular signals that control both normal and malignant myelopoiesis.


Retinoic Acid Acute Promyelocytic Leukemia Acute Promyelocytic Leukemia Cell Retinoic Acid Response Element Retinoic Acid Receptor Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fenaux P, Le Deley MC, Castaigne S, et al. 1993. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood 82:3241–3249.Google Scholar
  2. 2.
    Tallman MS, Andersen JW, Schiffer CA, et al. 1997. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 337:1021–1028.PubMedGoogle Scholar
  3. 3.
    Hillestad LK. 1957. Acute promyelocytic leukemia. Acta Med Scand 159:189–194.PubMedGoogle Scholar
  4. 4.
    Rowley JD, Golomb HM, Dougherty C. 1977. 15/17 translocation: a consistent chromosomal change in acute promyelocytic leukemia. Lancet 1:549–550.PubMedGoogle Scholar
  5. 5.
    Breitman TR, Selonick SE, Collins SJ. 1980. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 77:2936–2940.PubMedGoogle Scholar
  6. 6.
    Breitman TR, Collins SJ, Keene BR. 1981. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57:1000–1004.PubMedGoogle Scholar
  7. 7.
    Petkovich M, Brand NJ, Krust A, Chambon P. 1987. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450.PubMedGoogle Scholar
  8. 8.
    Mattei MG, Petkovich M, Mattei JF, Brand N, Chambon P. 1988. Mapping of the human retinoic acid receptor to the q21 band of chromosome 17. Hum Genet 80:186–188.PubMedGoogle Scholar
  9. 9.
    Alcalay M, Zangrilli D, Pandolfi PP, et al. 1991. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc Natl Acad Sci USA 88:1977–1981.PubMedGoogle Scholar
  10. 10.
    Borrow J, Goddard AD, Sheer D, Solomon E. 1990. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580.PubMedGoogle Scholar
  11. 11.
    de-Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. 1990. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347:558–561.PubMedGoogle Scholar
  12. 12.
    Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi A, Lo Coco F, Grignani F, Pelicci PG. 1994. Acute promyelocytic leukemia: from genetics to treatment. Blood 83:10–25.PubMedGoogle Scholar
  13. 13.
    Hiorns LR, Min T, Swansbury GJ, Zelent A, Dyer MJS, Catovsky D. 1994. Interstitial insertion of retinoic acid receptor-α gene in acute promyelocytic leukemia with normal chromosomes 15 and 17. Blood 83:2946–2951.PubMedGoogle Scholar
  14. 14.
    Lafage-Pochitaloff M, Alcalay M, Brunel V, Longo L, Sainty D, Simonetti J, Birg F, Pellici P. 1995. Acute promyelocytic leukemia cases with nonreciprocal PML/RARα or RARα/ PML fusion genes. Blood 85:1169–1174.PubMedGoogle Scholar
  15. 15.
    de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. 1991. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684.PubMedGoogle Scholar
  16. 16.
    Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM. 1991. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674.PubMedGoogle Scholar
  17. 17.
    Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, Lanotte M, Berger R, Chambon P. 1992. Structure, localization and transcriptional properties of two classes of retinoic acid receptor a fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 11:629–642.PubMedGoogle Scholar
  18. 18.
    Lovering R, Hanson I, Borden K, Martin S, O’Reilly N, Evan G, Rahman D, Pappin D, Trowsdale J, Freemont P. 1993. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 90:2112–2116.PubMedGoogle Scholar
  19. 19.
    Borden KLB, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS. 1995. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14:1532–1541.PubMedGoogle Scholar
  20. 20.
    Takahashi M, Inaguma Y, Hiai H, Hirose F. 1988. Developmentally regulated expression of a human finger containing gene encoded by the 5’ half of the ret transforming gene. Mol Cell Biol 8:1853–1856.PubMedGoogle Scholar
  21. 21.
    Miki T, Fleming TP, Crescenzi M, Molloy C, Blam S, Reynolds S, Aaronson S. 1991. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc Natl Acad Sci USA 88:5167–5171.PubMedGoogle Scholar
  22. 22.
    Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P. 1993. PMLRAR homodimers: distinct DNA binding properties and heterodimeric interactions with RXR. EMBO J 12:3171–3182.PubMedGoogle Scholar
  23. 23.
    Grignani F, Testa U, Rogaia D, et al. 1996. Effects on differentiation by the promyelocytic leukemia PML/RARα protein depend on the fusion of the PML protein dimerization and RARα DNA binding domains. EMBO J 15:4949–4958.PubMedGoogle Scholar
  24. 24.
    Fagioli M, Alcalay M, Pandolfi P, Venturini L, Mencarelli A, Simeone A, Acampora D, Grignani F, Pelicci P. 1992. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 7:1083–1091.PubMedGoogle Scholar
  25. 25.
    Chang K-S, Fan Y-H, Andreeff M, Liu J, Mu Z-M. 1995. The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood 85:3646–3653.PubMedGoogle Scholar
  26. 26.
    Koken MHM, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thepot J, Juhlin L, Degos L, Calvo F, de The H. 1995. The PML growth suppressor has an altered expression in human oncogenesis. Oncogene 10:1315–1324.PubMedGoogle Scholar
  27. 27.
    Terris B, Baldin V, Dubois S, Degott C, Flejou J-F, Henin D, Dejean A. 1995. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res 55:1590–1597.PubMedGoogle Scholar
  28. 28.
    Flenghi L, Fagioli M, Tomassoni L, et al. 1995. Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 85:1871–1880.PubMedGoogle Scholar
  29. 29.
    Lavau C, Marchio A, Fagioli M, Jansen J, Falini B, Lebon P, Grosveld F, Pandolfi PP, Pelicci PG, Dejean A. 1995. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11:871–876.PubMedGoogle Scholar
  30. 30.
    Chelbi-Alix MK, Pelicano L, Quignon F, Koken MHM, Venturini L, Stadler M, Pavlovic J, Degos L, de The H. 1995. Induction of the PML protein by interferons in normal and APL cells. Leukemia 9:2027–2033.PubMedGoogle Scholar
  31. 31.
    Nason-Burchenal K, Gandini D, Botto M, Allopenna J, Seale JRC, Cross NCP, Goldman JM, Dmitrovsky E, Pandolfi PP. 1996. Interferon augments PML and PML/RARα expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line. Blood 88:3926–3936.PubMedGoogle Scholar
  32. 32.
    Stadler M, Chelbi-Alix MK, Koken MHM, et al. 1995. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and A GAS element. Oncogene 11:2565–2573.PubMedGoogle Scholar
  33. 33.
    Koken MHM, Puvion-Dutilleul F, Guillemin MC, et al. 1994. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13:1073–1083.PubMedGoogle Scholar
  34. 34.
    Dyck JA, Maul GG, Miller WH Jr, Chen JC, Kakizuka A, Evans RM. 1994. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76:333–343.PubMedGoogle Scholar
  35. 35.
    Weis K, Rambaud S, Laqvau C, Jansen J, Carvalgo T, Carmo-Fonseca M, Lamond A, Dejean A. 1994. Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocyte leukemia. Cell 76:345–356.PubMedGoogle Scholar
  36. 36.
    Jiang WQ, Ringertz N. 1997. Altered distribution of the promyelocytic leukemia-associated protein is associated with cellular senescence. Cell Growth Differ 8:513–522.PubMedGoogle Scholar
  37. 37.
    Zhu J, Koken MHM, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, Chen Z, de The H. 1997. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:3978–3983.PubMedGoogle Scholar
  38. 38.
    Boddy MN, Howe K, Etkin DL, Solomon E, Freemont PS. 1996. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukemia. Oncogene 13:971–982.PubMedGoogle Scholar
  39. 39.
    Koken MHM, Reid A, Quignon F, et al. 1997. Leukaemia-associated retinoic acid receptor α fusion partners, PML and PLZF, heterodimerize and co-localize to nuclear bodies. Proc Natl Acad Sci USA 94:10255–10260.PubMedGoogle Scholar
  40. 40.
    Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A. 1993. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 12:1161–1167.PubMedGoogle Scholar
  41. 41.
    Licht J, Chomienne C, Goy A, et al. 1995. Clinical and molecular characterization of a rare syndrome of acute prorayelocytic leukemia associated with translocation (11;17). Blood 85:1083–1094.PubMedGoogle Scholar
  42. 42.
    Mu Z-M, Chin K-V, Liu J-H, Lozano G, Chang K-S. 1994. PML, a growth suppressor disrupted in acute promyelocyte leukemia. Mol Cell Biol 14:6858–6867.PubMedGoogle Scholar
  43. 43.
    Ahn M-J, Nason-Burchenal K, Moasser M, Dmitrovsky E. 1995. Growth suppression of acute promyelocytic leukemia cells having increased expression of the non-rearranged alleles: RARα or PML. Oncogene 10:2307–2314.PubMedGoogle Scholar
  44. 44.
    Le X-F, Yang P, Chang K-S. 1996. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene PML. J Biol Chem 271:130–135.PubMedGoogle Scholar
  45. 45.
    Kuehnle I, Chu TW, Gruen JR, Margolin JF. 1997. The coiled-coil domain of PML is a functionally conserved transcriptional repression domain. Blood 90:322a.Google Scholar
  46. 46.
    Chambon P. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954.PubMedGoogle Scholar
  47. 47.
    Kurokawa R, Soderstrom M, Horlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK. 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454.PubMedGoogle Scholar
  48. 48.
    Nagpal S, Friant S, Nakshatri H, Chambon P. 1993. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 12:2349–2360.PubMedGoogle Scholar
  49. 49.
    Rochette-Egly C, Adam S, Rossignol M, Egly J-M, Chambon P. 1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90:97–107.PubMedGoogle Scholar
  50. 50.
    Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. 1995. Crystal structure of the RAR-γ ligand binding domain bound to all-trans retinoic acid. Nature 378:681–689.PubMedGoogle Scholar
  51. 51.
    vom Baur E, Zechel C, Heery D, Heine MJS, Garnier JM, Vivat V, Le Douarin B, Gronemeyer H, Chambon P, Losson R. 1996. Differential ligand-dependent interactions between the AF-2 activation domain of nuclear receptors and the putative transcriptional intermediary factors mSUG and TIF1. EMBO J 15:110–124.Google Scholar
  52. 52.
    Botling J, Castro DS, Oberg F, Nilsson K, Perlmann T. 1997. Retinoic acid receptor/retinoid X receptor heterodimers can be activated through both subunits providing a basis for synergistic transactivation and cellular differentiation. J Biol Chem 272:9443–9449.PubMedGoogle Scholar
  53. 53.
    Chen D, Evans RM. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.PubMedGoogle Scholar
  54. 54.
    Pazin MJ, Kadonaga JT. 1997. What’s up and down with histone deacetylation and transcription. Cell 89:325–328.PubMedGoogle Scholar
  55. 55.
    Montminy M. 1997. Something new to hang your HAT on. Nature 387:654–655.PubMedGoogle Scholar
  56. 56.
    Pfahl M. 1993. Nuclear receptor/AP-1 interaction. Endocrine Rev 14:651–658.Google Scholar
  57. 57.
    Nagy L, Kao H-Y, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.PubMedGoogle Scholar
  58. 58.
    Gallagher RE, Said F, Pua I, Papenhausen PR, Paietta E, Wiernik PH. 1989. Expression of retinoic acid receptor alpha mRNA in human leukemic cells with variable responsiveness to retinoic acid. Leukemia 3:789–795.PubMedGoogle Scholar
  59. 59.
    Kizaki M, Nakajima H, Mori S, Koike T, Morikawa M, Ohta M, Saito M, Koeffler H, Ikeda Y. 1994. Novel retinoic acid, 9-cis retinoic acid, in combination with all-trans-retinoic acid is an effective inducer of differentiation of retinoic acid-resistant HL-60 cells. Blood 83:3289–3297.PubMedGoogle Scholar
  60. 60.
    Nagy L, Thomazy V, Shipley G, Fesus L, Lamph W, Heyman R, Chandraratna R, Davies P. 1995. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol 15:3540–3551.PubMedGoogle Scholar
  61. 61.
    Tsai S, Collins S. 1993. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci USA 90:7153–7157.PubMedGoogle Scholar
  62. 62.
    Robertson K, Emami B, Collins S. 1992. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 80:1885–1888.PubMedGoogle Scholar
  63. 63.
    Li Y-P, Said F, Gallagher R. 1994. Retinoic acid-resistant HL-60 cells exclusively contain mutant retinoic acid receptor-alpha. Blood 83:3298–3302.PubMedGoogle Scholar
  64. 64.
    Diverio D, Lo Coco F, D’Adamo F, et al. 1992. Identification of DNA rearrangements at the retinoic acid receptor alpha (RAR-alpha) locus in all patients with acute promyelocytic leukemia (APL) and mapping of APL breakpoints within the RAR-alpha second intron. Blood 79:3331–3336.PubMedGoogle Scholar
  65. 65.
    Gallagher RE, Willman CL, Slack JL, et al. 1997. Association of PML-RARα fusion mRNA type with pre-treatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood 90:1656–1663.PubMedGoogle Scholar
  66. 66.
    Kane JR, Head DR, Balazs L, et al. 1996. Molecular analysis of the PML/RAR alpha chimeric gene in pediatric acute promyelocytic leukemia. Leukemia 10:1296–1302.PubMedGoogle Scholar
  67. 67.
    Slack JL, Willman CL, Li YP, Viswanatha D, Bloomfield CD, Wiernik PH, Tallman MS, Gallagher RE. 1996. Molecular characteristics and clinical features of adult APL patients with the type V PML-RARα isoform: results from intergroup protocol 0129. Blood 88:635a.Google Scholar
  68. 68.
    Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P, Bennet JM, Tallman MS, Wiernik PH. 1995. Characterization of acute promyelocytic leukemia cases with PML-RARα break/fusion sites in PML exon 6: indentification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood 86:1540–1547.PubMedGoogle Scholar
  69. 69.
    Benedetti L, Levin AA, Scicchitano BM, et al. 1997. Characterization of the retinoid binding properties of the major fusion products present in acute promyelocytic leukemia cells. Blood 90:1175–1185.PubMedGoogle Scholar
  70. 70.
    Slack JL, Arthur DC, Lawrence D, et al. 1997. Secondary cytogenetic changes in acute promyelocytic leukemia: prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene. A Cancer and Leukemia Group B study. J Clin Oncol 15:1786–1795.Google Scholar
  71. 71.
    Slack JL, Yu M. 1998. Constitutive expression of the promyelocytic leukemia-associated oncogene PML-RARα in TF1 cells: isoform-specific and retinoid-dependent effects on growth, bcl-2 expression, and apoptosis. Blood 91:3347–3356.PubMedGoogle Scholar
  72. 72.
    Huang ME, Ye YC, Chen SR, Chai JR, Lu J-X, Zhoa L, Gu LJ, Wang ZY. 1988. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572.PubMedGoogle Scholar
  73. 73.
    Vahdat L, Maslak P, Miller WH Jr, Eardley A, Heller G, Scheinberg DA, Warrell RP Jr. 1994. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PML/RAR-α isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood 84:3843–3849.PubMedGoogle Scholar
  74. 74.
    Fukutani H, Naoe T, Ohno R. et al. 1995. Isoforms of PML-retinoic acid alpha fused transcripts affect neither clinical features of acute promyelocytic leukemia nor prognosis after treatment with all-trans retinoic acid. Leukemia 9:1478–1482.PubMedGoogle Scholar
  75. 75.
    Daniel MT, Koken M, Romagne O, Barbey S, Bazarbachi A, Stadler M, Guillemin MC, Degos L, Chomienne C, de The H. 1993. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82:1858–1867.PubMedGoogle Scholar
  76. 76.
    Ferrucci PF, Grignani F, Pearson M, Fagioli M, Nicoletti I, Pelicci PG. 1997. Cell death induction by the acute promyelocytic leukemia-specific PML/RARα fusion protein. Proc Natl Acad Sci USA 94:10901–10906.PubMedGoogle Scholar
  77. 77.
    Szostecki C, Guldner HH, Netter HJ, Will H. 1990. Isolation and characterization of a cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 145:4338–4347.PubMedGoogle Scholar
  78. 78.
    Dyck JA, Warrell RP Jr, Evans RM, Miller WH Jr. 1995. Rapid diagnosis of acute promyelocytic leukemia by immunohistochemical localization of PML/RAR-alpha protein. Blood 86:862–867.PubMedGoogle Scholar
  79. 79.
    Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A. 1995. Multimeric complexes of the PML-retinoic receptor alpha protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA 92:7401–7405.PubMedGoogle Scholar
  80. 80.
    Au-Fleigner M, Helmer E, Casanova J, Raaka BM, Samuels HH. 1993. The conserved ninth C-terminal heptad in thyroid hormone and retinoic acid receptors mediates diverse responses by affecting heterodimer but not homodimer formation. Mol Cell Biol 13:5725–5737.Google Scholar
  81. 81.
    Benedetti L, Grignani F, Scicchitano BM, et al. 1996. Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARα-mediated increase of type II transglutaminase. Blood 87:1939–1950.PubMedGoogle Scholar
  82. 82.
    Onodera M, Kunisada T, Nishikawa S, Sakiyama Y, Matsumoto S, Nishikawa S. 1995. Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene 11:1291–1298.PubMedGoogle Scholar
  83. 83.
    Grignani F, Testa U, Fagioli M, Barberi T, Masciulli R, Mariani G, Peschle C, Pelicci PG. 1995. Promyelocytic leukemia-specific PML-retinoic acid alpha receptor fusion protein interferes with erythroid differentiation of human erythroleukemia K562 cells. Cancer Res 55:440–443.PubMedGoogle Scholar
  84. 84.
    Sunaga S, Maki K, Lagasse E, Blanco JC, Ozato K, Miyazaki J, Ikuta K. 1997. Myeloid differentiation is impaired in transgenic mice with targeted expression of a dominant negative form of retinoid X receptor beta. Br J Haematol 96:19–30.PubMedGoogle Scholar
  85. 85.
    Hong S-H, David G, Wong C-W, Dejean A, Privalsky ML. 1997. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α(RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:9028–9033.PubMedGoogle Scholar
  86. 86.
    Grignani F, Ferrucci PF, Testa U, et al. 1993. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74:423–431.PubMedGoogle Scholar
  87. 87.
    Fu S, Consoli U, Hanania EG, Zu Z, Claxton DF, Andreef M, Deisseroth AB. 1995. PML/ RARα, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Clin Cancer Res 1:583–590.PubMedGoogle Scholar
  88. 88.
    Rogaia D, Grignani F, Grignani F, Nicoletti I, Pelicci PG. 1995. The acute promyelocytic leukemia-specific PML/RAR alpha fusion protein reduces the frequency of commitment to apoptosis upon growth factor deprivation of GM-CSF-dependent myeloid cells. Leukemia 9:1467–1472.PubMedGoogle Scholar
  89. 89.
    Rousselot P, Hardas B, Patel A, et al. 1994. The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9:545–551.PubMedGoogle Scholar
  90. 90.
    Testa U, Grignani F, Barberi T, et al. 1994. PML-RARα + U937 mutant and NB4 cell lines: retinoic acid restores the monocytic differentiation response to vitamin D3. Cancer Res 54:4508–4515.PubMedGoogle Scholar
  91. 91.
    Altabef M, Garcia M, Lavau C, Bae S-C, Dejean A, Samarut J. 1996. A retrovirus carrying the promyelocyte-retinoic acid receptor PML-RARα fusion gene transforms haematopoietic progenitors in vitro and induces acute leukaemias. EMBO J 15:2707–2716.PubMedGoogle Scholar
  92. 92.
    Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, Pelicci PG, Miller WH Jr. 1996. The PML/RARα oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 88:2826–2832.PubMedGoogle Scholar
  93. 93.
    Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, Ohno R, Naoe T. 1996. Accelerated degradation of PML-retinoic acid receptor a (PML-RARα) oncoprotein by all-trans retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 56:2945–2948.PubMedGoogle Scholar
  94. 94.
    Warrell R Jr. 1993. Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood 82:1949–1953.PubMedGoogle Scholar
  95. 95.
    Nobile LM, Li Y-P, Tallman MS, Wiernik PH, Gallagher RE. 1996. Sequence analysis of the PML zinc finger region of the PML-RARα fusion gene in acute promyelocytic leukemia (APL) relapse cases from protocol E2491. Blood 88:364a. (abstract)Google Scholar
  96. 96.
    Early E, Moore MA, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM, Dmitrovsky E. 1996. Transgenic expression of PML/RARα impairs myelopoiesis. Proc Natl Acad Sci USA 93:7900–7904.PubMedGoogle Scholar
  97. 97.
    Lagasse E, Weissman I. 1992. Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 79:1907–1915.PubMedGoogle Scholar
  98. 98.
    Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, Atwater S, Bishop JM. 1997. A PML-RARα transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:2551–2556.PubMedGoogle Scholar
  99. 99.
    Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. 1997. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89:376–387.PubMedGoogle Scholar
  100. 100.
    He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G, Pandolfi PP. 1997. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proc Natl Acad Sci USA 94:5302–5307.PubMedGoogle Scholar
  101. 101.
    Pandolfi PP, Alcalay M, Fagioli M. 1992. Genomic variability and alternative splicing generate multiple PML-RARα transcripts that encode aberrant PML proteins and PML-RARα isoforms in acute promyelocytic leukaemia. Embo J 11:1397–1407.PubMedGoogle Scholar
  102. 102.
    Pollock JL, Grisolano JL, Goda P, Westervelt P, Ley TJ. 1997. Development of acute promyelocytic leukemia (APML) in transgenic mice expressing both PML-RARα and the reciprocal fusion protein, RARα-PML. Blood 90:320a.Google Scholar
  103. 103.
    Yoshida H, Naoe T, Fukutani F, Kiyoi H, Kubo K, Ohno R. 1995. Analysis of the joining sequences of the t(15;17) translocation human acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short sequences. Genes Chromosomes Cancer 12:37–44.PubMedGoogle Scholar
  104. 104.
    Borrow J, Goddard AD, Gibbons B, et al. 1992. Diagnosis of acute promyelocytic leukaemia by RT-PCR detection of PML-RARA and RARA-PML fusion transcripts. Br J Haematol 82:529–540.PubMedGoogle Scholar
  105. 105.
    Alcalay M, Zangrilli D, Fagioli M, Pandolfi P, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci P. 1992. Expression pattern of the RARα-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89:4840–4844.PubMedGoogle Scholar
  106. 106.
    Li YP, Andersen J, Zelent A, Rao S, Paietta E, Tallman M, Wiernik P, Gallagher RE. 1997. RARα1/RARα2-PML mRNA expression in acute promyelocytic leukemia cells: a molecular and laboratory-clinical correlative study. Blood 90:306–312.PubMedGoogle Scholar
  107. 107.
    Leroy P, Nakshatri H, Chambon P. 1991. Mouse retinoic acid receptor a2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 88:10138–10142.PubMedGoogle Scholar
  108. 108.
    Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L. 1990. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76:1704–1709.Google Scholar
  109. 109.
    Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L. 1990. All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76:1710–1717.PubMedGoogle Scholar
  110. 110.
    Vyas RC, Frankel SR, Agbor P, Miller WH Jr, Warrell RP Jr, Hittelman WN. 1996. Probing the pathobiology of response to all-trans retinoic acid in acute promyelocytic leukemia: premature chromosome condensation/fluorescence in situ hybridization analysis. Blood 87:218–226.PubMedGoogle Scholar
  111. 111.
    Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M, Chambon P. 1993. High postnatal lethality and testis degeneration in retinoic acid receptor α mutant mice. Proc Natl Acad Sci USA 90:7225–7229.PubMedGoogle Scholar
  112. 112.
    Redner RL, Corey SL, Rush EA. 1997. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia 11:1014–1016.PubMedGoogle Scholar
  113. 113.
    Wells RA, Hummel JL, De Koven A, Zipursky A, Kirby M, Dube I, Kamel-Reid S. 1996. A new variant translocation in acute promyelocytic leukaemia: molecular characterization and clinical correlation. Leukemia 10:735–740.PubMedGoogle Scholar
  114. 114.
    Giudez F, Huang W, Tong JT, Dubois C, Balitrand N, Michaux J, Martiat P, Degos L, Waxman S, Chomienne C. 1994. Poor response to all-trans retinoic acid in a t(11;17) PLZF/ RARα AML M3 patient. Leukemia 8:312–314.Google Scholar
  115. 115.
    Lanotte M, Martin-Thouvenin B, Najman S, Balerini P, Valensi F, Berger R. 1991. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77:1080–1086.PubMedGoogle Scholar
  116. 116.
    Zhu J, Shi XG, Chu HY, Tong JH, Wang ZY, Naoe T, Waxman S, Chen SJ, Chen Z. 1995. Effect of retinoic acid isomers on proliferation, differentiation and PML relocalization in the APL cell line NB4. Leukemia 9:302–309.PubMedGoogle Scholar
  117. 117.
    Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, Gronemeyer H. 1996. Two distinct actions of retinoid-receptor ligands. Nature 382:819–822.PubMedGoogle Scholar
  118. 118.
    Brooks SC III, Sturgill R, Choi J, Yen A. 1997. An RXR-selective analog attenuates the RARα-selective analog-induced differentiation and non-G1-restricted growth arrest of NB4 cells. Exp Cell Res 234:259–269.PubMedGoogle Scholar
  119. 119.
    Duprez E, Lillehaug JR, Gaub MP, Lanotte M. 1996. Differential changes of retinoid-X-receptor (RXRα) and its RARα and PML-RARα partners induced by retinoic acid and cAMP distinguish maturation sensitive and resistant t(15;17) promyelocytic leukemia NB4 cells. Oncogene 12:2443–2450.PubMedGoogle Scholar
  120. 120.
    Bruel A, Benoit G, De Nay D, Brown S, Lanotte M. 1995. Distinct apoptotic responses in maturation sensitive and resistant t(15;17) acute promyelocytic leukemia NB4 cells. 9-cis retinoic acid induces apoptosis independent of maturation and Bcl-2 expression. Leukemia 9:1173–1184.PubMedGoogle Scholar
  121. 121.
    Shao W, Benedetti L, Lamph WW, Nervi C, Miller WH Jr. 1997. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RARα mutation. Blood 89:4282–4289.PubMedGoogle Scholar
  122. 122.
    Ruthardt M, Testa U, Nervi C, Ferrucci PF, Grignani F, Puccetti E, Grignani F, Peschele C, Pelicci PG. 1997. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor a (RARα) and PLZF-RARα fusion proteins on retinoic acid signaling. Mol Cell Biol 17:4859–4869.PubMedGoogle Scholar
  123. 123.
    Maeda Y, Horiuchi F, Miyatake J, Sono H, Tatsumi Y, Urase F, Irimajiri K, Horiuchi A. 1996. Inhibition of growth and induction of apoptosis by all-trans retinoic acid in lymphoid cell lines transfected with the PML-RAR alpha fusion gene. Br J Haematol 93:973–976.PubMedGoogle Scholar
  124. 124.
    Calabresse C, Barbey S, Venturini L, Balitrand N, Degos L, Fenaux P, Chomienne C. 1995. In vitro treatment with retinoids or the topoisomerase inhibitor, VP-16, evidences different functional apoptotic pathways in acute promyelocytic leukemic cells. Leukemia 9:2049–2057.PubMedGoogle Scholar
  125. 125.
    Delia D, Aiello A, Soligo D, Fontanella E, Melani C, Pezzella F, Pierotti MA, Della-Porta G. 1992. Bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood 79:1291–1298.PubMedGoogle Scholar
  126. 126.
    Hu Z-B, Minden MD, McCulloch EA. 1995. Direct evidence for the participation of bcl-2 in the regulation by retinoic acid of the Ara-C sensitivity of leukemic stem cells. Leukemia 9:1667–1673.PubMedGoogle Scholar
  127. 127.
    Miyashita T, Reed JC, Sabido O, Roubi N, Vasselon C, Archimbaud E, Magaud J, Guyotat D. 1993. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157.PubMedGoogle Scholar
  128. 128.
    Keith FJ, Bradbury DA, Zhu Y-M, Russell NH. 1995. Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9:131–138.PubMedGoogle Scholar
  129. 129.
    Campos L, Sabido O, Rouault J-P, Guyotat D. 1994. Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 84:595–600.PubMedGoogle Scholar
  130. 130.
    Estey E, Beran M, Pierce S, Kantarjian H, Keating M. 1997. All-trans retinoic acid may improve results of chemotherapy in poor prognosis non-APL and MDS: a randomized study. Blood 90:416a.Google Scholar
  131. 131.
    Dermime B, Grignani F, Clerici M, et al. 1993. Occurrence of resistance to retinoic acid in the acute promyelocytic cell line NB4 is associated with altered expression of the PML/RARα protein. Blood 82:1573–1577.PubMedGoogle Scholar
  132. 132.
    Rosenauer A, Railson JV, Nervi C, Eydoux P, DeBlasio A, Miller WH Jr. 1996. Alteration in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines. Blood 88:2671–2682.PubMedGoogle Scholar
  133. 133.
    Ruchaud S, Duprez E, Gendron MD, Houge G, Genieser HG, Jastorff B, Doskeland SO, Lanotte M. 1994. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc Natl Acad Sci USA 91:8428–8432.PubMedGoogle Scholar
  134. 134.
    Davies PJ, Chiocca EA, Stein JP. 1988. Retinoid-induced expression of tissue transglutaminase in normal and leukemic myeloid cells. Adv Exp Med Biol 231:63–71.PubMedGoogle Scholar
  135. 135.
    Piacentini M, Davies PJA, Fesus L. 1994. Tissue transglutaminase in cells undergoing apoptosis. In Tomei LD, Cope FO (eds), Apoptosis II: The Molecular Basis of Apoptosis in Disease. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, p 143.Google Scholar
  136. 136.
    Deprez E, Tong J-H, Derre J, Chen S-J, Berger R, Chen Z, Lanotte M. 1997. JEM-1, a novel gene encoding a leucine-zipper nuclear factor upregulated during retinoid-induced maturation of NB4 promyelocytic leukaemia. Oncogene 14:1563–1570.Google Scholar
  137. 137.
    Mao M, Yu M, Tong J-H. 1996. RIG-E, a human homolog of the murine Ly-6 family, is induced by retinoic acid during the differentiation of acute promyelocytic leukemia cell. Proc Natl Acad Sci USA 93:5910–5914.PubMedGoogle Scholar
  138. 138.
    Yu M, Tong JH, Mao M, et al. 1997. Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes. Proc Natl Acad Sci USA 94:7406–7411.PubMedGoogle Scholar
  139. 139.
    Gianni M, Terao M, Fortino I, LiCalzi M, Viggiano V, Barbui T, Rambaldi A, Garattini E. 1997. Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 89:1001–1012.PubMedGoogle Scholar
  140. 140.
    Duprez E, Lillehaug JR, Naoe T, Lanotte M. 1996. cAMP signaling is decisive for recovery of nuclear bodies (PODs) during maturation of RA-resistant t(15;17) promyelocytic leukemia NB4 cells expressing PML-RARα. Oncogene 12:2451–2459.PubMedGoogle Scholar
  141. 141.
    Degos L, Dombret HCC, Daniel M-T, Miclea J-M, Chastang C, Castaigne S, Fenaux P. 1995. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85:2643–2653.PubMedGoogle Scholar
  142. 142.
    Muindi J, Frankel S, Miller WH Jr, Jakubowski A, Scheinberg D, Young C, Dmitrovsky E, Warrell RP Jr. 1992. Continuous treatment with all-trans-retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid ‘resistance’ in patients with acute promyelocytic leukemia. Blood 79:299–303.PubMedGoogle Scholar
  143. 143.
    Cornic M, Delva L, Guidez F, Balitrand N, Degos L, Chomienne C. 1992. Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res 52:3329–3334.PubMedGoogle Scholar
  144. 144.
    Adamson P, Boylan J, Balis F, Murphy R, Godwin K, Gudas L, Poplack D. 1993. Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein. Cancer Res 53:472–476.PubMedGoogle Scholar
  145. 145.
    Napoli JL. 1996. Retinoic acid biosynthesis and metabolism. FASEB J 10:993–1001.PubMedGoogle Scholar
  146. 146.
    Muindi J, Frankel S, Huselton C, DeGrazia F, Garland W, Young C, Warrell RP Jr. 1992. Clinical pharmacology of oral all-trans retinoic acid with acute promyelocytic leukemia. Cancer Res 52:2138–2142.PubMedGoogle Scholar
  147. 147.
    Chen Z-X, Xue Y-Q, Zhang R, Tao R-F, Xia X-M, Li C, Wang W, Zu W-Y, Yao X-Z, Ling B-J. 1991. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78:1413–1419.PubMedGoogle Scholar
  148. 148.
    Castaigne S, Lefebvre P, Rigal-Huguet F, et al. 1992. Effectiveness and pharmacokinetics of low-dose all-trans retinoic acid (25 mg/m2) in acute promyelocytic leukemia. Blood 82:3560–3563.Google Scholar
  149. 149.
    Miller W Jr, Jakubowski A, Tong W, et al. 1995. 9-cis retinoic acid induces complete remission but does not reverse clinically acquired retinoid resistance in acute promyelocytic leukemia. Blood 85:3021–3027.PubMedGoogle Scholar
  150. 150.
    Delva L, Cornic M, Balitrand N, et al. 1993. Resistance to all-trans-retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood 82:2175–2181.PubMedGoogle Scholar
  151. 151.
    Li Y-P, Rao S, Paietta E, Tallman MS, Wiernik PH, Gallagher RE. 1996. Clinical relapse in retinoic acid-treated acute promyelocytic leukemia patients is associated with reduced leukemic cell sensitivity to retinoic acid-induced differentiation. Proc Am Assoc Cancer Res 37:174a.Google Scholar
  152. 152.
    Hallam S, Rao S, Wiernik P, Gallagher R. 1995. Cytoplasmic retinoic acid binding protein II mRNA measurements in acute promyelocytic leukemia. Proc Am Assoc Cancer Res.Google Scholar
  153. 153.
    Agadir A, Cornic M, Lefebvre P, Gourmel B, Balitrand N, Degos L, Chomienne C. 1995. Differential uptake of all-trans-retinoic acid by acute promyelocytic leukemic cells: evidence for its role in retinoic acid efficacy. Leukemia 9:139–145.PubMedGoogle Scholar
  154. 154.
    Agadir A, Cornic M, Lefebvre P, Gourmel B, Jerome M, Degos L, Fenaux P, Chomienne C. 1995. All-trans-retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: intracellular concentrations and biologic response relationship. J Clin Oncol 13:2517–2523.PubMedGoogle Scholar
  155. 155.
    Gallagher R, Collins S, Trujillo J, et al. 1979. Characterization of the continuous, differentiating myeloid leukemia cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54:713–733.PubMedGoogle Scholar
  156. 156.
    Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P, Berger R, Lanotte M. 1992. A retinoid acid ‘resistant’ t(15; 17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 6:1281–1287.PubMedGoogle Scholar
  157. 157.
    Gallagher RE, Bilello PA, Ferrari AC, Chang C-S, Chiu-Yen R-W, Nickols WA, Muly EC III. 1985. Characterization of differentiation-inducer-resistant HL-60 cells. Leukemia Res 9:967–986.Google Scholar
  158. 158.
    Dore BT, Momparler RL. 1996. Mutation in the ligand-binding domain of the retinoic acid receptor alpha in HL-60 leukemic cells resistant to retinoic acid and with increased sensitivity to vitamin D3 analogs. Leukemia Res 20:761–769.Google Scholar
  159. 159.
    Atkins KB, Troen BR. 1995. Comparative responsiveness of HL-60, HL-60R and HL-60R+ (LRARSN) cells to retinoic acid, calcitriol, 9-cis retinoic acid and sodium butyrate. Blood 86:2475–2480.PubMedGoogle Scholar
  160. 160.
    Grillier I, Umiel T, Elstner E, Collins SJ, Koeffler HP. 1997. Alterations of differentiation, clonal proliferation, cell cycle progression and bcl-2 expression in RARα-altered sublines of HL-60. Leukemia 11:393–400.PubMedGoogle Scholar
  161. 161.
    Kitamura K, Kiyoi H, Yoshida H, Saito H, Ohno R, Naoe T. 1997. Mutant AF-2 domain of PML-RARα in retinoic acid-resistant NB4 cells: differentiation induced by RA is triggered directly through PML-RARα and its down-regulation in acute promyelocytic leukemia. Leukemia 11:1950–1956.PubMedGoogle Scholar
  162. 162.
    Huggenvid JI, Collard MW, Kim Y-W, Sharma RP. 1993. Modification of the retinoic acid pathway by the catalytic subunit of preen kinase-A. Mol Endocrinol 7:543–549.Google Scholar
  163. 163.
    Gianni M, Terao M, Norio P, Barbui T, Rambaldi A, Garattini E. 1995. All-trans retinoic and cyclic adenosine monophosphate cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood 85:3619–3635.PubMedGoogle Scholar
  164. 164.
    Kumar R, Korutla L. 1995. Growth inhibition of human acute promyelocytic leukemia NB-4 cells by interferons and all-trans retinoic acid: trans-modulation of inducible gene expression pathways. Anticancer Res 15:353–360.PubMedGoogle Scholar
  165. 165.
    Gianni M, Zanotta S, Terao M, Ramboaldi A, Garattini E. 1996. Interferons induce normal and aberrant retinoic-acid receptors type a in acute promyelocytic leukemia cells: potentiation of the induction of retinoid-dependent differentiation markers. Int J Cancer 68:75–83.PubMedGoogle Scholar
  166. 166.
    Morosetti R, Grignani F, Liberatore C, Pelicci PG, Schiller GJ, Kizaki M, Bartram CR, Miller CW, Koeffler HP. 1996. Infrequent alterations of the RAR alpha gene in acute myelogenous leukemias, retinoic acid-resistant acute promyelocytic leukemias, myelo-dysplastic syndromes, and cell lines. Blood 87:4399–4403.PubMedGoogle Scholar
  167. 167.
    Ding W, Li YP, Nobile LM, Grills G, Carrera I, Tallman MS, Wiernik PH, Gallagher RE. 1997. Retinoic acid receptor alpha (RARα)-region mutations in the PML-RARα fusion gene of acute promyelocytic leukemia (APL) patients after relapse from all-trans retinoic acid. Blood 90:415a. (abstract)Google Scholar
  168. 168.
    Head D, Kopecky KJ, Weick J et al. 1995. Effect of aggressive daunomycin therapy on survival in acute promyelocytic leukemia. Blood 86:1717–1728.PubMedGoogle Scholar
  169. 169.
    Kizaki M, Hironori U, Yamazoe Y, et al. 1996. Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood 87:725–733.PubMedGoogle Scholar
  170. 170.
    Matsushita H, Kizaki M, Kobayashi H, Takayama N, Ueno H, Muto A, Awaya N, Kinjo K, Ikeda Y. 1996. Recovery of drug sensitivity in retinoic acid-resistant leukemic cells by MDR1 ribozymes. Blood 88:663a. (abstract)Google Scholar
  171. 171.
    Ohno R, Yoshida H, Fukutani H, et al. 1993. Multi-institutional study of all-trans-retinoic acid as a differentiation therapy of refractory acute promyelocytic leukemia. Leukemia 7:1722–1727.PubMedGoogle Scholar
  172. 172.
    Frankel SR, Eardley A, Heller G, Berman E, Miller WH Jr, Dmitrovsky E, Warrell RP Jr. 1994. All-trans-retinoic acid for acute promyelocytic leukemia: results of the New York study. Ann Intern Med 120:278–286.PubMedGoogle Scholar
  173. 173.
    Paietta E, Andersen J, Racevskis J, Gallagher R, Bennett J, Yunis J, Cassileth P, Wiernik P. 1994. Significantly lower P-glycoprotein expression in acute promyelocytic leukemia than in other types of acute myeloid leukemia: immunological, molecular and functional analyses. Leukemia 8:968–973.PubMedGoogle Scholar
  174. 174.
    Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. 1993. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096.PubMedGoogle Scholar
  175. 175.
    Minn AJ, Rudin CM, Boise LH, Thompson CB. 1995. Expression of bcl-XL can confer a multidrug resistance phenotype. Blood 86:1903–1910.PubMedGoogle Scholar
  176. 176.
    Pallis M, Zhu YM, Russell NH. 1997. Bcl-XL is heterogeneously expressed by acute myeloblastic leukaemia cells and is associated with autonomous growth in vitro and with P-glycoprotein expression. Leukemia 11:945–949.PubMedGoogle Scholar
  177. 177.
    Chen GQ, Zhu J, Shi XG, et al. 1996. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of bcl-2 expression and alteration of PML-RARα/ PML protein localization. Blood 88:1052–1061.PubMedGoogle Scholar
  178. 178.
    Chen GQ, Shi XG, Tang W, et al. 1997. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89:3345–3353.PubMedGoogle Scholar
  179. 179.
    Shen ZX, Chen GQ, Ni JH, et al. 1997. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360.PubMedGoogle Scholar
  180. 180.
    Shao W, Fanelli M, Ferrara FF, et al. In press. As2O3 induced apoptosis and loss of PML/ RARα protein in both retinoid sensitive and resistant APL cells. J Natl Cancer Inst.Google Scholar
  181. 181.
    Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. 1996. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87:882–886.PubMedGoogle Scholar
  182. 182.
    Wells RA, Catzavelos C, Kamel-Reid S. 1997. Fusion of retinoic acid receptor a to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukemia. Nat Genet 17:109–113.PubMedGoogle Scholar
  183. 183.
    Corey S, Locker J, Oliveri DR, Shekter-Levin S, Redner RL, Penchansky L, Gollin SM. 1994. A non-classical translocation involving 17ql2 (retinoic acid receptor-α) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 8:1350–1353.PubMedGoogle Scholar
  184. 184.
    Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A. 1995. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic cells. Blood 86:4544–4552.PubMedGoogle Scholar
  185. 185.
    Licht JD, Shaknovich R, English MA, Melnick A, Li JY, Reddy JD, Dong S, Chen SJ, Zelent A, Waxman S. 1996. Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-α chimera generated in t(11;17)-associated acute promyelocytic leukemia. Oncogene 12:323–336.PubMedGoogle Scholar
  186. 186.
    Dong S, Zhu J, Reid A, et al. 1996. Amino-terminal protein—protein interaction motif (POZ-domain) is reponsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-α fusion protein. Proc Natl Acad Sci USA 93:3624–3629.PubMedGoogle Scholar
  187. 187.
    Shaknovich R, Yeyati PL, Waxman S, Hellinger N, Nason-Burchenal K, Dmitrovsky E, Strutt P, Zelent A, Licht JD. 1994. The promyelocytic leukemia zinc finger protein (PLZF) suppresses growth and induces apoptosis. Blood 88:555a.Google Scholar
  188. 188.
    Li JY, English MA, Ball HJ, Yeyati PL, Waxman S, Licht JD. 1997. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem 272: 22447–22455.PubMedGoogle Scholar
  189. 189.
    Bardwell VJ, Treisman R. 1994. The POZ domain: A protien—protein interaction motif. Genes Dev 8:1664–1677.PubMedGoogle Scholar
  190. 190.
    Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W. 1996. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res 24:4859–4867.PubMedGoogle Scholar
  191. 191.
    Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ III. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10:2067–2078.PubMedGoogle Scholar
  192. 192.
    Sitterlin D, Tiollais P, Transy C. 1997. The RARα-PLZF chimera associated with acute promyelocytic leukemia has retained a sequence-specific DNA-binding domain. Oncogene 14:1067–1074.PubMedGoogle Scholar
  193. 193.
    Chen Z, Guidez F, Rousselot P, Agadir A, Chen SJ, Wang ZY, Degos L, Zelent A, Waxman S, Chomienne C. 1994. PLZF-RARα fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91:1178–1182.PubMedGoogle Scholar
  194. 194.
    Chan WY, Liu QR, Borjigin J, Busch H, Rennert OM, Tease LA, Chan PA. 1989. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 28:1033–1041.PubMedGoogle Scholar
  195. 195.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. 1994. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284.PubMedGoogle Scholar
  196. 196.
    Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, Carroll AJ, Morris SW. 1996. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12:265–275.PubMedGoogle Scholar
  197. 197.
    Yang CH, Lambie EJ, Snyder M. 1992. NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol 116:1303–1317.PubMedGoogle Scholar
  198. 198.
    Compton DA, Szilak I, Cleveland DW. 1992. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 116:1395–1408.PubMedGoogle Scholar
  199. 199.
    Diverio D, Pandolfi PP, Rossi V, Biondi A, Pelicci PG, Lo Coco F. 1994. Monitoring of treatment outcome in acute promyelocytic leukemia by RT-PCR. Leukemia 8:1105–1107.PubMedGoogle Scholar
  200. 200.
    Diverio D, Riccioni R, Pistilli A, Buffolino S, Avvisati G, Mandelli F, Lo Coco F. 1996. Improved rapid detection of the PML/RARα fusion gene in acute promyelocytic leukemia. Leukemia 10:1214–1216.PubMedGoogle Scholar
  201. 201.
    Seale JRC, Varma S, Swirsky DM, Pandolfi P-P, Goldman JM. 1996. Quantification of PML-RARα transcripts in acute promyelocytic leukemia: explanation for the lack of sensitivity of RT-PCR for the detection of minimal residual disease and induction of the leukemia-specific mRNA by alpha interferon. Br J Haematol 95:95–101.PubMedGoogle Scholar
  202. 202.
    Peruzzi D, DeBlasio T, Warrell RP Jr, Pandolfi PP. 1996. Highly sensitive RT-PCR assay for detection of minimal residual disease in acute promyelocytic leukemia. Blood 88:366a. (abstract)Google Scholar
  203. 203.
    Fukutani H, Naoe T, Ohno R, et al. 1995. Prognostic significance of the RT-PCR assay of PML-RARA transcripts in acute promyelocytic leukemia. Leukemia 9:588–593.PubMedGoogle Scholar
  204. 204.
    Jurcic JG, Miller WH Jr, DeBlasio A, Scheinberg DA, Warrell RP Jr. 1996. Prognostic significance of minimal residual disease detection and PML-RARα isoform type: long-term follow-up in acute promyelocytic leukemia (APL). Blood 88:635a. (abstract)Google Scholar
  205. 205.
    Korninger L, Knobl P, Lacaika K, Mustafa S, Quehenberger P, Schwarzinger I, Lechner K, Jaeger U, Mannhalter C. 1994. PML-RARα positivity precedes hematologic relapse by 2-3 months. Br J Haematol 88:427–431.PubMedGoogle Scholar
  206. 206.
    Martinelli G, Remiddi C, Visani G, et al. 1995. Molecular analysis of PML-RARα fusion mRNA detected by reverse transcription-polymerase chain reaction assay in long-term disease-free acute promyelocytic leukemia patients. Br J Haematol 90:966–968.PubMedGoogle Scholar
  207. 207.
    Grimwade D, Howe K, Langabeer S, Burnett A, Goldstone A, Solomon E. 1996. Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: evaluation of PML-RARα and RARα-PML assessment in patients who ultimately relapse. Leukemia 10:61–66.PubMedGoogle Scholar
  208. 208.
    Mandelli F, Diverio D, Avvisati G, et al. 1997. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Blood 90:1014–1021.PubMedGoogle Scholar
  209. 209.
    Lo Coco F, Diverio D, Avvisati G, et al. 1997. Prospective RT-PCR monitoring of minimal residual disease an acute promyelocytic leukemia (APL) patients enrolled in the multicentric GIMEMA-AIEOP ‘AIDA’ trial. Blood 90:390a. (abstract)Google Scholar
  210. 210.
    Grimwade D, Howe K, Langabeer S, et al. 1996. Establishing the presence of the t(15;17) in suspected acute promyelocytic leukemia: cytogenetic, molecular, and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. Br J Haematol 94:557–573.PubMedGoogle Scholar
  211. 211.
    Tobal K, Saunders MJ, Grey MR, Liu Yin JA. 1995. Persistence of RARα-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukemia. Br J Haematol 90:615–618.PubMedGoogle Scholar
  212. 212.
    Jurlander J, Caligiuri MA, Ruutu T, et al. 1996. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood 88:2183–2191.PubMedGoogle Scholar
  213. 213.
    Nucifora G, Larson RA, Rowley JD. 1993. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82:712.PubMedGoogle Scholar
  214. 214.
    Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF. 1997. Measurement of residual disease during remission induction in childhood acute lymphoblastic leukemia. N Engl J Med 336:317–323.PubMedGoogle Scholar
  215. 215.
    Brunel V, Sainty D, Carbuccia N, Arnoulet C, Costello R, Mozziconacci MJ, Simonetti J, Coignet L, Gabert J, Stoppa AM. 1995. Unbalanced translocation t(5;17) in an typical acute promyelocytic leukemia. Genes Chromosomes Cancer 14:307–312.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1999

Authors and Affiliations

  • James L. Slack
  • Robert E. Gallagher

There are no affiliations available

Personalised recommendations