Advertisement

The application of immunocytochemistry and in situ hybridization to cryostat sections of undecalcified bone

  • Robert A. Dodds
  • Janice R. Connor
  • Ian E. James

Abstract

This chapter presents the in situ techniques for determining the temporal and spatial expression patterns of both mRNA (in situ hybridization) and protein (immuno-cytochemistry) in individual cells within sections of bone.

Keywords

Cryostat Section Bone Section Bone Matrix Protein Human Osteoclast Freeze Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodds, R.A., Connor, J.R., James, I.E. et al. (1995) Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone. Journal of Bone and Mineral Research 10), 1666–1680.PubMedCrossRefGoogle Scholar
  2. 2.
    Bradbeer, J. (1992) The cell biology of bone remodelling, in Recent Advances in Clinical Endocrinology and Metabolism, Vol. 4, (eds D.W. Lincoln and C.R.W. Edwards), Churchill Livingstone, London, pp. 95–114.Google Scholar
  3. 3.
    Chayen, J. and Bitensky, L. (eds) (1991) Practical Histochemistry, 2nd edn, John Wiley and Sons, London.Google Scholar
  4. 4.
    Watkins, S. (1989) Immunohistochemistry, in Current Protocols in Molecular Biology, (eds F.M. Ausubel, R. Brent, R.E. Kinston et al.), John Wiley and Sons, Inc., Greene Publishing Associates, New York, pp. 14.6.1–14.6.13.Google Scholar
  5. 5.
    Onetti-Muda, A., Riminucci, P. and Bianco, P. (1992) Freeze-drying of bone tissue: immunocytochemistry and enzyme histochemistry on paraffin embedded and low-temperature resin embedded specimens. Histochemistry 98, 283–288.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikeda, T., Nomura, S., Yamaguchi, A. et al. (1992) In situ hybridisation of bone matrix proteins in undecalcified adult rat bone sections. Journal of Histochemistry and Cytochemistry 40), 1079–1088.PubMedGoogle Scholar
  7. 7.
    Zeller, R. and Rogers, M. (1989) In situ hybridisation to cellular RNA, in Current Protocols in Molecular Biology, (eds F.M. Ausubel, R. Brent, R.E. Kinston et ah), John Wiley and Sons, Inc., Greene Publishing Associates, New York, pp. 14.2.1–14.3.11.Google Scholar
  8. 8.
    Johnstone, J.J.A. (1979) The routine sectioning of undecalcified bone for cytochemical studies. Histochemistry Journal 11), 359–365.CrossRefGoogle Scholar
  9. 9.
    Bradbeer, J.N., Lindsay, P.C. and Reeve, J. (1994) Fluctuation of mineral apposition rate at individual bone-remodelling sites in human iliac cancellous bone: independent correlations with osteoid width and osteoblastic alkaline phosphatase activity. Journal of Bone and Mineral Research 9), 1679–1686.PubMedGoogle Scholar
  10. 10.
    Coons, A.H., Creech, HJ. and Jones, R.N. (1941) Immunological properties of an antibody containing a fluorescent group. Proceedings of the Society of Experimental Biology and Medicine 47), 200–205.Google Scholar
  11. 11.
    Nakane, P.K. and Pierce G.B. (1967) Enzyme-labeled antibodies: preparations and applications for the localization of antigens. Journal of Histochemistry and Cytochemistry 14), 929–930.Google Scholar
  12. 12.
    Johnson, G.D. and Dorling, J. (1981) Immunofluorescence and peroxidase techniques, in Techniques in Clinical Immunology, (ed. R.A. Thompson), Blackwell Scientific Publications, London, pp. 106–137.Google Scholar
  13. 13.
    Gall, J.G. and Pardue, M.L. (1971) Nucleic acid hybridization in cytological preparations. Methods in Enzymology 38), 470–480.CrossRefGoogle Scholar
  14. 14.
    Hafen, E., Levine, M., Garber, R.L. and Gehring, W.J. (1983) An improved in situ hybridisation method for the detection of cellular RNA in drosophila tissue sections and its application for localizing transcripts of the homeotic antennapedia complex. EMBO Journal 2), 617–623.PubMedGoogle Scholar
  15. 15.
    Akam, M.E. (1983) The location of ultrabithorax transcripts in Drosophila tissue sections. EMBO Journal 2), 2075–2084.PubMedGoogle Scholar
  16. 16.
    Cox, K.H., DeLeon, D.V., Angerer, L.M. and Angerer, R.C. (1984) Detection of mRNAs in sea urchin embryos by in situ hybridisation using asymmetric RNA probes. Developmental Biology 101), 485–502.PubMedCrossRefGoogle Scholar
  17. 17.
    Awgulewitsch A., Utset, M.F., Hart, C.P. et al. (1986) Spatial restriction in expression of a mouse homeobox locus within the central nervous system. Nature 320), 328–335.PubMedCrossRefGoogle Scholar
  18. 18.
    McLaughlin, S.K. and Margolskee, R.F. (1993) 33P is preferable to 35S for labeling probes used in in situ hybridisation. BioTechniques 15), 506–511.PubMedGoogle Scholar
  19. 19.
    Singer, R.H. and Ward, D.C. (1982) Actin gene expression visualized in a chicken muscle tissue culture by using in situ hybridisation with a biotinated nucleotide analog. Proceedings of the National Academy of Sciences USA 79), 7331–7335.CrossRefGoogle Scholar
  20. 20.
    Singer, R.H., Lawrence, J.B. and Villnave, C. (1986) Optimization of in situ hybridisation using isotopic and nonisotopic methods. BioTechniques 4), 230–250.Google Scholar
  21. 21.
    Nuovo, G. (1994) PCR In Situ Hybridisation, 2nd edn, Raven Press, New York.CrossRefGoogle Scholar
  22. 22.
    Wilkinson, D.G. (1992) The theory and practice of in situ hybridisation; in In Situ Hybridisation: a Practical Approach (ed. D.G. Wilkinson), Oxford University Press, New York, pp. 1–13.Google Scholar
  23. 23.
    Angerer, L.M. and Angerer, R.C. (1992) In situ hybridisation to cellular RNA with radiolabelled RNA probes, in In Situ Hybridisation: a Practical Approach (ed. D.G. Wilkinson), Oxford University Press, New York, pp. 15–32.Google Scholar
  24. 24.
    Polak, J.M. and McGee, J. O’ D. (eds) (1990) In Situ Hybridisation, Principles and Practice, Oxford University Press, New York.Google Scholar
  25. 25.
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  26. 26.
    Bloch, K.D., and Bartos, B. (1992) Digestion of DNA with restriction endonucleases, in Current Protocols in Molecular Biology, (eds F.M. Ausubel, R. Brent, R.E. Kinston et al.), John Wiley & Sons, Inc., Greene Publishing Associates, New York, pp. 3.1.1–3.1.9.Google Scholar
  27. 27.
    Lu, L.H. and Gillett, N. (1994) An optimized protocol for in situ hybridisation using PCR-generated 33P-labeled riboprobes. Cell Vision 1), 169–176.Google Scholar
  28. 28.
    Drake, F.H., Dodds, R.A., James, I.E. et al. (1996) Large scale sequencing of ESTs from human osteoclast cDNA library: ‘Electronic northern blot’. Bone 17), 579.CrossRefGoogle Scholar
  29. 29.
    Drake, F.H., Dodds, R.A., James, I.E. et al. (1996) Cathepsin K, but not cathepsins B, L, or S is abundantly expressed in human osteoclasts. Journal of Biological Chemistry 271), 12511–12516.PubMedCrossRefGoogle Scholar
  30. 30.
    James, I.E., Dodds, R.A., Rykaczewski, L.E. et al. (1996) Purification and characterization of fully functional human osteoclast precursors. Journal of Bone and Mineral Research, 11), 1608–1618.PubMedGoogle Scholar
  31. 31.
    Merry, K.H., Dodds, R.A., Littlewood, A.J. and Gowen, M. (1992) Osteoclasts express osteopontin mRNA in sections of human bone as detected by in situ hybridisation. Calcified Tissue International 50(S1), A40.Google Scholar
  32. 32.
    Merry, K., Dodds, R.A., Littlewood, A. and Gowen, M. (1993) Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. Journal of Cell Science 104), 1013–1020.PubMedGoogle Scholar
  33. 33.
    Connor, J.R., Dodds, R.A., James, I.E. and Gowen, M. (1995) Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA. Journal of Histochemistry and Cytochemistry 43), 1193–1201.PubMedGoogle Scholar
  34. 34.
    James, I.E., Dodds, R.A., Olivera, D.L. et al. (1996) Human osteoclastoma-derived stromal cells: correlation of the ability to form mineralized nodules in vitro with formation of bone in vivo. Journal of Bone and Mineral Research 11), 1453–1460.PubMedGoogle Scholar
  35. 35.
    Dodds, R.A., James, I.E., Olivera, D.L. et al. (1996) Formation of bone by human osteoclastoma-derived stromal cells in the SCID mouse model is preceded by mouse osteoclast differentiation. Bone 17), 578.CrossRefGoogle Scholar
  36. 36.
    Dodds, R.A., Merry. K., Littlewood, A. and Gowen, M. (1994) Expression of mRNA for ILlb, IL6, and TGFb in developing bone and cartilage. Journal of Histochemistry and Cytochemistry 42), 733–744.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1998

Authors and Affiliations

  • Robert A. Dodds
  • Janice R. Connor
  • Ian E. James

There are no affiliations available

Personalised recommendations