Advertisement

Bone organ cultures

  • Sajeda Meghji
  • Peter A. Hill
  • Malcolm Harris

Abstract

The previous chapters have highlighted the use of isolated osteoblasts and osteoclasts in skeletal research. While it is obviously important to investigate the functions of individual bone cell populations, the biology of bone is that of an organ system with distinct but interacting cells. Organ culture of bone provides a model that is, in certain respects, closer to the in vivo situation. Bone organ culture naturally encompasses the interactions that occur between the different cell types present in bone and bone marrow. Moreover, as bone is a tissue with a predominance of extracellular matrix, organ or expiant culture techniques allow the study of the interaction of bone cells with the natural matrix of bone.

Keywords

Bone Resorption Organ Culture Calvarial Bone Stimulate Bone Resorption Biophysical Research Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fell, H.B. and Mellanby, E. (1952) The effect of hypervitaminosis A on embryonic limbbones cultivated in vitro. Journal of Physiology 116), 320–349.PubMedGoogle Scholar
  2. 2.
    Raisz, L. (1965) Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. Journal of Clinical Investigation 44), 103–116.PubMedGoogle Scholar
  3. 3.
    Reynolds, J.J. and Dingle, J.T. (1970) A sensitive in vitro method for studying the induction and inhibition of bone resorption. Calcified Tissue International 4), 339–349.Google Scholar
  4. 4.
    Goldhaber, P. (1961) Oxygen dependent bone resorption in tissue culture, in The Parathyroids, (eds R.O. Greep and R.V. Talamage), Charles C. Thomas, Springfield, IL, pp. 243–255.Google Scholar
  5. 5.
    Raisz, L. and Niemann, I. (1967) Early effects of parathyroid hormone and thyrocal-citonin in bone organ culture. Nature 214), 486–488.PubMedCrossRefGoogle Scholar
  6. 6.
    Tashjian, A.H., Voekel E.F., Lazzaro, M. et al. (1985) Alpha and beta transforming growth factors stimulate prostaglandin production and bone resorption in cultured murine calvaria. Proceedings of the National Academy of Sciences USA 82), 4535–4538.CrossRefGoogle Scholar
  7. 7.
    McSheehy, P.M.J. and Chambers, T.J. (1986) Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118), 824–828.PubMedGoogle Scholar
  8. 8.
    Meghji, S., Sandy, J.R., Scutt, A. et al. (1988) Heterogeneity of bone resorbing factors produced by murine osteoblasts in vitro: modulation by parathyroid hormone and mononuclear cell products. Archives of Oral Biology 33), 773–778.PubMedCrossRefGoogle Scholar
  9. 9.
    Hill, P.A., Reynolds, J.J. and Meikle, M.C. (1995) Osteoblasts mediate insulin-like growth factor-I and-II stimulation of osteoclast formation and function. Endocrinology 136), 124–131.PubMedCrossRefGoogle Scholar
  10. 10.
    Akatsu, T., Takahashi, N., Udagawa, N. et al. (1991) Role of prostaglandins in interleukin-1 induced bone resorption in mice in vitro. Journal of Bone and Mineral Research 6(2) 183–190.PubMedGoogle Scholar
  11. 11.
    Corboz, V.A., Cecchini, M.G., Felix, R. et al. (1992) Effect of macrophage colony stimulating factor on in vitro osteoclast generation and bone resorption. Endocrinology 130(1), 437–442.PubMedCrossRefGoogle Scholar
  12. 12.
    Girasole, G., Passeri, G., Jilka, R.L. and Manolagas, S.C. (1994) Interlenkin-11: a new cytokine critical for osteoclast development. Journal of Clinical Investigation 93: 1516–1524.PubMedGoogle Scholar
  13. 13.
    Bertolini, D.R., Nedwin, G.E., Bringman, T.S. et al. (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factor. Nature 319), 516–518.PubMedCrossRefGoogle Scholar
  14. 14.
    Biggers, J.D., Gwatkin, R.B.L. and Heyner, S. (1961) Growth of embryonic avian and mammalian tibiae on a relatively simple chemically defined medium. Experimental Cell Research 25), 41–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Reynolds, J.J. (1972) Skeletal tissue in culture, in The Biochemistry and Physiology of Bone, 2nd edn, Vol. 1, (ed. G.H. Bourne), Academic Press, New York and London, pp. 69–126.Google Scholar
  16. 16.
    Reynolds, J.J. (1976) Organ cultures of bone: studies on the physiology and pathology of resorption, in Organ Culture in Biomedical Research (eds M. Balls and M. Monnickendam), Cambridge University Press, Cambridge, pp. 355–366.Google Scholar
  17. 17.
    Reynolds, J.J., Holick, M.F. and DeLuca, H.F. (1973) The role of vitamin D metabolites in bone resorption. Calcified Tissue International 12), 295–301.CrossRefGoogle Scholar
  18. 18.
    Heath, J.K., Saklatvala, J., Meikle, M.C. et al. (1985) Pig interleukin-1 (catabolin) is a potent stimulator of bone resorption in vitro. Calcified Tissue International 37), 95–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Gowen, M. and Mundy, G.R. (1986) Actions of recombinant interleukin-1, interleukin-2, and interferon-gamma on bone resorption in vitro. Journal of Immunology 136), 2478–2482.Google Scholar
  20. 20.
    Gowen, M., Nedwin, G.E. and Mundy, G.R. (1986) Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma. Journal of Bone and Mineral Research 1), 469–474.PubMedGoogle Scholar
  21. 21.
    Tatakis, D.N. and Dziak, R. (1989) Recombinant human lymphotoxin effects on osteoblastic cells. Biochemical and Biophysical Research Communications 162), 435–440.PubMedCrossRefGoogle Scholar
  22. 22.
    Lerner, U.H. and Ohlin, A. (1993) Tumour necrosis factors alpha and beta stimulate bone resorption in cultured mouse calvariae by a prostaglandin-independent mechanism. Journal of Bone and Mineral Research 8(2), 147–155.PubMedGoogle Scholar
  23. 23.
    Zanelli, J.M., Lea, D.J. and Nisbet, J.A. (1969) A bioassay method in vitro for parathyroid hormone. Journal of Endocrinology 43), 33–46.PubMedGoogle Scholar
  24. 24.
    Harris, M., Jenkins, M.V., Bennett, A. and Wills, M.R. (1973) Prostaglandin production and bone resorption by dental cysts. Nature 245), 213–215.PubMedCrossRefGoogle Scholar
  25. 25.
    Meghji, S., Sandy, J.R., Scutt, A. et al. (1988) Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins 36), 139–149.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirby, A.C., Meghji, S., Nair, S.P. et al. (1995) The potent bone resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. Journal of Clinical Investigation 96), 1185–1194.PubMedGoogle Scholar
  27. 27.
    Leis, H.J., Malle, E., Hoffmann, O. et al. (1990) Experimental considerations on the measurement of prostaglandins during long-term incubations of neonatal mouse calvaria. Biochemical and Biophysical Research Communications 169(2), 545–550.PubMedCrossRefGoogle Scholar
  28. 28.
    Lerner, U.H. (1987) Modifications of the mouse calvarial technique improve the responsiveness to stimulators of bone resorption. Journal of Bone and Mineral Research 2), 375, 383.Google Scholar
  29. 29.
    Marshall, M.J., Holt, I. and Davie, M.W.J. (1995) The number of tartrate-resistant acid phosphatase-positive osteoclasts on neonatal mouse parietal bones is decreased when prostaglandin synthesis is inhibited and increased in response to prostaglandin E2, parathyroid hormone and 1.25 dihydroxyvitamin D3. Calcified Tissue International 56), 240–245.PubMedCrossRefGoogle Scholar
  30. 30.
    Ljunggren, O., Ransjo, M. and Lerner, U.H. (1991) In vitro studies on bone resorption in neonatal mouse calvariae using a modified dissection technique giving four samples of bone from each calvaria. Journal of Bone and Mineral Research 6), 543–550.PubMedGoogle Scholar
  31. 31.
    Lerner, U.H. and Hanstrom, L. (1989) Stimulation and inhibition of mitotic activity in cultured mouse calvarial bones by cyclic AMP analogues and phosphodiesterase inhibitors is unrelated to the delayed resorptive effects of cyclic AMP. Experimental Clinical Endocrinology 8), 89–95.Google Scholar
  32. 32.
    Lorenzo, J.A., Raisz, L.G. and Hock, J.M. (1983) DNA synthesis is not necessary for osteoclastic responses to parathyroid hormone in cultured foetal rat long bones. Journal of Clinical Investigation 72), 1924–1929.PubMedGoogle Scholar
  33. 33.
    Krieger, N.S., Feldman, R.S. and Tahjian, A.H. Jr (1982) Parathyroid hormone and calcitonin interactions in bone: irradiation-induced inhibition of escape in vitro. Calcified Tissue International 34), 197–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Hill, P.A., Docherty, A.J.P., Bottomley, K.M.K. et al. (1995) Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochemical Journal 308), 167–175.PubMedGoogle Scholar
  35. 35.
    Lerner, U.H., Hanstrom, L. and Sjostrom, S. (1990) Stimulation of bone resorption and cell proliferation in vitro by human gingival fibroblasts from patients with periodontal disease. Bone and Mineral 10), 225–242.PubMedCrossRefGoogle Scholar
  36. 36.
    Brand, J.S. and Raisz, L.G. (1972) Effects of thyrocalcitonin and phosphate ion on the parathyroid hormone stimulated resorption of bone. Endocrinology 90), 479–487.PubMedGoogle Scholar
  37. 37.
    Bingham, P.J. and Raisz, L.G. (1974) Bone growth in organ culture: effects of phosphate and other nutrients on bone and cartilage. Calcified Tissue Research 14), 31–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Ljunggren, O. and Ljunghall, S. (1992) Carboxyterminal telopeptide of type I collagen, ICTP, as a marker of matrix degradation in neonatal mouse calvarial bones, in vitro. Bioscience Reports 12(5), 407–411.PubMedCrossRefGoogle Scholar
  39. 39.
    Melkko, J., Niemi, S., Risteli, L. et al. (1990) Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clinical Chemistry 36(7), 1328–1332.PubMedGoogle Scholar
  40. 40.
    Foged, N.T., Lou, H. and Delaisse, J.M. (1995) Characterization of the collagen degradation in continous cultures of osteoclasts. Journal of Bone and Mineral Research 10(SI), S294.Google Scholar
  41. 41.
    Stewart, P.J. and Stern, P.H. (1987) Vertebral bone resorption in vitro: effects of parathyroid hormone, calcitonin, 1,25 dihydroxyvitamin D3, epidermal growth factor, prostaglandin E2 and oestrogen. Calcified Tissue International 40), 21–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Stern, P.H. and Kreiger, N.S. (1983) Comparison of foetal rat limb bone and neonatal mouse calvariae: effects of parathyroid hormone and 1,25 dihydroxyvitamin D3. Calcified Tissue International 35), 172–176.PubMedCrossRefGoogle Scholar
  43. 43.
    Tashjian, A.H. and Levine, L. (1978) Epidermal growth factor stimulates prostaglandin production in cultured murine calvaria. Biochemical and Biophysical Research Communications 85), 966–975.PubMedGoogle Scholar
  44. 44.
    Stern, P.H., Kreiger, N.S., Nissenson, R.A. et al. (1985) Human transforming growth factor-alpha stimulates bone resorption in vitro. Journal of Clinical Investigation 76), 2016–2019.PubMedGoogle Scholar
  45. 45.
    Raisz, L.G., Simmons, H.A., Sandberg, A.L. et al. (1980) Direct stimulation of bone resorption by epidermal growth factor. Endocrinology 107), 207–203.Google Scholar
  46. 46.
    Suda, T., Takahashi, N. and Martin, T.J. (1992) Modulation of osteoclast differentiation. Endocrine Review 13), 66–80.CrossRefGoogle Scholar
  47. 47.
    Burger, E., Van der Meer, J. and Nijeide, P. (1984) Osteoclast formation from mononuclear phagocytes: role of bone forming cells. Journal of Cell Biology 99), 1901–1906.PubMedCrossRefGoogle Scholar
  48. 48.
    Burger, E.H., Thesingh, C.W., Van der Meer, J.W.M. and Nijweide, P.J. (1984) Development of osteoclasts in the mouse-localization of osteoclast precursors and role of bone forming cells, in Endocrine Control of Bone and Calcium Metabolism (eds D.V. Cohn, T. Fujita, J.T. Potts and R.V. Talmage), Elsevier, Amsterdam, pp. 125–130.Google Scholar
  49. 49.
    Ko, J. and Bernard, G. (1981) Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast free-bone. American Journal of Anatomy 106), 415–425.CrossRefGoogle Scholar
  50. 50.
    Burger, E.H., van der Meer, J.W.H.., van de Gevel, J.S. et al. (1982) In vitro formation of osteoclasts from long-term cultures of bone marrow phagocytes. Journal of Experimental Research 156), 1604–1614.Google Scholar
  51. 51.
    Thesingh, C.W. and Burger, E.H. (1983) The role of mesenchyme in embryonic long bones as early deposition site for osteoclast progenitor cells. Developmental Biology 95), 429–438.PubMedCrossRefGoogle Scholar
  52. 52.
    Scheven, B.B., Kawilarang-de Haas, E.W., Wassenaar, A.M. et al. (1986) Differentiation kinetics of osteoclast in the periosteum of embryonic bones in vivo and in vitro. Anatomical Record 214), 418–423.PubMedCrossRefGoogle Scholar
  53. 53.
    Van der Pluijm, G., Most, W., Van der Wee-Pals, L. et al. (1991) Two distinct effects of recombinant human tumour necrosis factor-alpha on osteoclast development and subsequent resorption of mineralised matrix. Endocrinology 129), 1596–1604.PubMedCrossRefGoogle Scholar
  54. 54.
    Leloup, G., Delaisse, J.M. and Vaes, G. (1994) Relationship of the plasminogen activator/plasmin cascade to osteoclast invasion and mineral resorption in explanted foetal metatarsal bones. Journal of Bone and Mineral Research 9), 891–902.PubMedGoogle Scholar
  55. 55.
    Blavier, L. and Delaisse, J.M. (1995) Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. Journal of Cell Science 108 3649–3659.PubMedGoogle Scholar
  56. 56.
    Van der Pluijm, G., Mouthaan, H., Baas, C. et al. (1994) Integrins and osteoclastic resorption in three bone organ cultures: differential senstivity to synthetic Arg-Gly-Asp peptides during osteoclast formation. Journal of Bone and Mineral Research 9), 1021–1028.PubMedGoogle Scholar
  57. 57.
    Most, W., Schot, L., Ederveen, A. et al. (1995) In vitro and ex vivo evidence that estrogens suppress increased bone resorption induced by ovariectomy or PTH stimulation through an effect on osteoclastogenesis. Journal of Bone and Mineral Research 10), 1523–1530.PubMedCrossRefGoogle Scholar
  58. 58.
    Tashjian, A.H. and Levine, L. (1978) Epidermal growth factor stimulates prostaglandin production and bone resorption in cultured mouse calvaria. Biochemical and Biophysical Research Communications 85), 966–975.PubMedCrossRefGoogle Scholar
  59. 59.
    Ibbotson, K.J., Twardzik, D.R., D’Souza, S.M. et al. (1985) Stimulation of bone resorption in vitro by synthetic transforming growth factor alpha. Science 228(4702), 1007–1009.PubMedCrossRefGoogle Scholar
  60. 60.
    Pfeilschifter, J., Seyedin, S.M. and Mundy, G.R. (1988) Transforming growth factor beta inhibits bone resorption in foetal rat long bone cultures. Journal of Clinical Investigation 82), 680–685.PubMedCrossRefGoogle Scholar
  61. 61.
    Stern, P. and Raisz, L.G. (1979) Organ culture of bone, in Skeletal Research: an Experimental Approach, (eds D.J. Simmons and A.S. Kunin), Academic Press, New York, pp. 21–59.Google Scholar
  62. 62.
    Boonekamp, P.M., van der Wee Pals, L.J.A., van Wijk-van Lennep, M.M.L. et al. (1986) Two modes of action of bisphosphonates on osteoclastic resorption of mineralised matrix. Bone and Mineral 1), 27–39.PubMedGoogle Scholar
  63. 63.
    Puzas, L.E. and Brand, J.S. (1985) In vitro use of vitamin D3 metabolites: culture conditions determine cell uptake. Calcified Tissue International 37(5), 474–477.PubMedCrossRefGoogle Scholar
  64. 64.
    Van Beek, E., Ruit, M.O., van der Wee Pals, L.J.A. et al. (1995) Effects of experimental conditions on the release of 45Calcium from prelabeled foetal mouse long bones. Bone 17(1), 63–69.PubMedCrossRefGoogle Scholar
  65. 65.
    Meghji, S., Sandy, J.R., Harvey, W. et al. (1992) Stimulation of bone collagen and noncollagenous protein synthesis by products of 5-and 12-lipoxygenase: determination by use of a simple quantitative assay. Bone and Mineral 18), 119–132.PubMedCrossRefGoogle Scholar
  66. 66.
    Lowik, C.W.G.M., van der Pluijm, G., Bloys, H. et al. (1989) Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate IL-6 production by osteogeneic cells: a possible role of IL-6 in osteoclastogenesis. Biochemical and Biophysical Research Communications 162), 1546–1552.PubMedCrossRefGoogle Scholar
  67. 67.
    Kream, B.E., Rowe, D.W., Gworek, S.C. and Raisz, L.G. (1980) Parathyroid hormone alters collagen synthesis and procollagen mRNA levels in foetal rat calvaria. Proceedings of the National Academy of Sciences USA 77), 5654–5658.CrossRefGoogle Scholar
  68. 68.
    Meghji, S., Henderson, B., Nair, S. and Wilson, M. (1992) Inhibition of bone DNA and collagen production by surface associated material from bacteria implicated in the pathology of periodontal disease. Journal of Periodontology 63), 736–742.PubMedGoogle Scholar
  69. 69.
    Chyun, Y.S. and Raisz, L.G. (1984) Stimulation of bone formation by prostaglandin E1 and F1α. Prostaglandins 27), 96–103.CrossRefGoogle Scholar
  70. 70.
    Hefley, T.J., Kreiger, N.S. and Stern, P.H. (1986) Simultaneous measurement of bone resorption and collagen synthesis in neonatal mouse calvaria. Analytical Biochemistry 153), 166–171.PubMedCrossRefGoogle Scholar
  71. 71.
    Meghji, S., Wilson, M., Henderson, B. and Kinnane, D. (1992) Anti-proliferative and cytotoxic activity of surface-associated material from periodontopathogenic bacteria. Archives of Oral Biology 37), 637–644.PubMedCrossRefGoogle Scholar
  72. 72.
    Saito, M., Kawashima, K. and Endo, H. (1987) The establishment of a new biological assay system for simultaneous measurement of bone resorption and bone mineralization in organ cultures of chick embryonic femur. Journal of Pharmacobiological Dynamics 10 487–493.Google Scholar
  73. 73.
    Schwartz, Z., Ornoy, A. and Soskolne, W.A. (1985) An in vitro assay of bone development using foetal long bones of mice: morphological studies. Acta Anatomica 124), 197–205.PubMedGoogle Scholar
  74. 74.
    Gronowicz, G., Woodiel, F.N., McCarthy, M.B. and Raisz, L.G. (1989) In vitro mineralization of parietal bones in defined serum-free medium; effect of beta-glcerol phosphate. Journal of Bone and Mineral Research 4), 313–324.PubMedGoogle Scholar
  75. 75.
    Kaji, T., Kawatani, R., Hoshino, T. et al. (1990) A suitable culture medium for ossification of embryonic chick femur in organ culture. Bone and Mineral 9), 89–100.PubMedCrossRefGoogle Scholar
  76. 76.
    Katz, J.M., Wilson, S.J.M. and Gray, D.H. (1981) Bone resorption and prostaglandins production by mouse calvaria in vitro: response to exogenous prostaglandins and their precursor fatty acids. Prostaglandins 22), 537–551.PubMedCrossRefGoogle Scholar
  77. 77.
    Gitelman, H.J. (1967) An improved automated procedure for the determination of calcium in biological specimens. Analytical Biochemistry 18), 520–531.CrossRefGoogle Scholar
  78. 78.
    Meghji, S., Henderson, B., Morrison, M.S. et al (1996) Ca2+ release from cultured mouse calvaria is very sensitive to ambient pH. Journal of Bone and Mineral Research 11), 1824 (Abstr. P37)Google Scholar

Copyright information

© Chapman and Hall Ltd 1998

Authors and Affiliations

  • Sajeda Meghji
  • Peter A. Hill
  • Malcolm Harris

There are no affiliations available

Personalised recommendations