Pharmacologic considerations with antimicrobials used in oncology

  • Michael Postelnick
  • Sara R. Halbur
Part of the Cancer Treatment and Research book series (CTAR)


Due to the severely immunocompromised state that occurs in a number of oncology patients (with or without chemotherapy), antimicrobial therapy is often indicated. Therapy may be administered in response to a given pathogen at a specific site of infection or oftentimes is administered empirically. Multiple agents are frequently indicated to provide the necessary activity against likely microbial pathogens. This chapter addresses some of the pharmacologic considerations that are involved in the use of these agents. The antimicrobial agents that are commonly used in patients with neoplastic diseases are discussed. The areas of focus are the pharmacokinetic and pharmacodynamic characteristics of these agents as well as the more common adverse events associated with their use in this patient population and the clinically significant drug interactions that may be encountered.


Herpes Zoster Immunocompromised Patient Normal Renal Function Clin Infect Antimicrob Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AHFS 96 Drug Information. Washington DC: American Society of Hospital Pharmacists, 1996, pp. 515–556.Google Scholar
  2. 2.
    Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microsc Infect Dis 1995;22:89–96.Google Scholar
  3. 3.
    Cappelletty DM, Kang SL, Palmer SM, Rybak MJ. Pharmacodynamics of ceftazidime administered as continuous infusion or intermittent bolus alone and in combination with single daily-dose amikacin against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother 1995;39:1797–801.PubMedGoogle Scholar
  4. 4.
    Rolston KVI, Berkey P, Bodey GP, et al. A comparison of imipenem to ceftazidime with or without amikacin as empiric therapy in febrile neutropenic patients. Arch Intern Med 1992;152:283–291.PubMedGoogle Scholar
  5. 5.
    Benko AS, Cappelletty DM, Kruse JA, Rybak MJ. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother 1996;40:691–695.PubMedGoogle Scholar
  6. 6.
    Gutmann L, Williamson R, Kitzis M, Acar J. Synergism and antagonism in double beta-lactam combinations. Am J Med 1986;80:21–29.PubMedGoogle Scholar
  7. 7.
    Giamarellou H. Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am J Med 1986;80:126–137.PubMedGoogle Scholar
  8. 8.
    Young LS. Double beta-lactam therapy in the immunocompromised host. J Antimicrob Chemother 1985;16:4–6.PubMedGoogle Scholar
  9. 9.
    Kondo M, Tuchiya K. Effect of combination of cefsulodin and mecillinam. J Antibiot 1981;34:727–738.PubMedGoogle Scholar
  10. 10.
    Tybing L, Melchior NH. Mecillinam (FL 1060), a 6 beta amdinopenicillanic acid derivative: Bactericidal action and synergy in vitro. Antimicrob Agents Chemother 1975;8:271–276.Google Scholar
  11. 11.
    Kramer MJ, Mauriz YR, Times MD, Roberton TL, Cleeland R. Morphologic changes produced by amdinocillin alone and in combination with beta lactam antibiotics in vitro and in vivo. Am J Med 1983;75:30–40.PubMedGoogle Scholar
  12. 12.
    Cleeland R, Squires E. Enhanced activity of beta-lactam antibiotics with amdinocillin. Am J Med 1983;75:21–29.PubMedGoogle Scholar
  13. 13.
    Gerceker AA, Gurler B. In-vitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa. J Antimicrob Chemother 1995;36:707–711.PubMedGoogle Scholar
  14. 14.
    Baltch AL, Bassey C, Hammer MC, Smith RP, Conroy JV, Michelsen PB. Synergy with cefsulodin or piperacillin and three aminoglycosides or aztreonam against aminoglycoside resistant strains of Pseudomonas aeruginosa. J Antimicrob Chemother 1991;27:801–808.PubMedGoogle Scholar
  15. 15.
    Bosso JA, Saxon BA, Matsen JM. In vitro activity of aztreonam combined with tobramycin and gentamicin against clinical isolates of Pseudomonas aeruginosa and Pseudomonas cepacia from patients with cystic fibrosis. Antimicrob Agents Chemother 1987;31:1403–1405.PubMedGoogle Scholar
  16. 16.
    Moody JA, Leterson LR, Gerding DN. In vitro activities of ureido-penicillins alone and in combination with amikacin and three cephalosporin antibiotics. Antimicrob Agents Chemother 1984;26:256–259.PubMedGoogle Scholar
  17. 17.
    Wu DH, Baltch AL, Smith RP, Conlly PE. Effect of aztreonam in combination with azlocillin or piperacillin on Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984;26:519–521.PubMedGoogle Scholar
  18. 18.
    Kurtz TO, Winston DJ, Bruckner DA, Martin WJ. Comparative in vitro synergistic activity of new beta-lactam antimicrobial agents and amikacin against Pseudomonas aeruginosa and Serrada marcescens. Antimicrob Agents Chemother 1981;20:239–243.PubMedGoogle Scholar
  19. 19.
    Neu HC. Combination of ceftizoxime with azlocillin, mezlocillin, piperacillin, and ticarcillin. J Antimicrob Chemother 1982;10:63–68.PubMedGoogle Scholar
  20. 20.
    Peterson, LR, Gerding DN, Moody JA, Fasching CE. Comparison of azlocillin, ceftizoxime, cefoxitin, and amikacin alone and in combination against Pseudomonas aeruginosa in a neutropenic site rabbit model. Antimicrob Agents Chemother 1984;25:545–552.PubMedGoogle Scholar
  21. 21.
    Acar JF, Sabath LD, Ruch PA. Antagonism of the antibacterial action of some penicillins by other penicillins and cephalosporins. J Clin Invest 1975;53:446–453.Google Scholar
  22. 22.
    Sanders CC, Sanders WE. Microbial resistance to newer generation beta-lactam antibiotics: Clinical and laboratory implications. J Infect Dis 1985;151:399–406.PubMedGoogle Scholar
  23. 23.
    Mandell GL, Petri WA. Penicillins, cephalosporins, and other beta-lactam antibiotics. In: Hardman JG, Limbird LE, eds. Goodman and Gilman’s The Pharmacologic Basis of Therapeutics, 9th ed. New York: McGraw-Hill, 1996.Google Scholar
  24. 24.
    Levine BB. Antigenicity and cross reactivity of penicillins and cephalosporins. J Infect Dis 1973;128:S364–S366.PubMedGoogle Scholar
  25. 25.
    Anne S, Reisman RE. Risk of administering cephalosporin antibiotics to patients with histories of penicillin allergy. Ann Allergy Asthma Immunol 1995;74:167–170.PubMedGoogle Scholar
  26. 26.
    Lin RY. A persepctive on penicillin allergy. Arch Intern Med 1992;152:930–937.PubMedGoogle Scholar
  27. 27.
    Adelman DC. New beta-lactam antibiotics. In: Saxon A, moderator. Immediate Hypersensitivity Reactions to Beta Lactam Antibiotics. Ann Intern Med 1987;107:204–215.Google Scholar
  28. 28.
    Charak BS, Louie R, Malloy B, Twomey P, Mazumder A. The effect of amphotericin B, aztreonam, imipenem and cephalosporins on the bone marrow progenitor cell activity. J Antimicrob Chemother 1991;27:95–104.PubMedGoogle Scholar
  29. 29.
    Winston DJ, Barnes RC, Ho WG, Young LS, Champlin RE, Gale RP. Moxalactam plus piperacillin versus moxalactam plus amikacin in febrile granulocyctopenic patients. Am J Med 1984;77:442–450.PubMedGoogle Scholar
  30. 30.
    Kibbler CC, Prentice HG, Sage RJ, et al. A comparison of double beta lactam combinations with netilmicin/ureidopenicillin regimens in the empirical therapy of febrile neutropenic patients. J Antimicrob Chemother 1989;23:759–771.PubMedGoogle Scholar
  31. 31.
    Winston DJ, Ho WG, Bruckner DA, Champlin RE. Beta-lactam antibiotic therapy in febrile granulocytopenic patients: A randomized trial comparing cefoperazone plus piperacillin, ceftazidime plus piperacillin, and imipenem alone. Ann Intern Med 1991;115:849–859.PubMedGoogle Scholar
  32. 32.
    Johnson EJ, MacGowan AP, Potter MN, et al. Reduced absorption of oral ciprofloxacin after chemotherapy for haematological malignancy. J Antimicrob Chemother 1995;35:837–842.Google Scholar
  33. 33.
    Meunier F, Zinner SH, Gaya H, et al. Prospective randomized evaluation of ciprofloxacin versus piperacillin plus amikacin fro empiric antibiotic therapy of febrile granulocytopenic cancer patients with lymphomas and solid tumors. Antimicrob Agents Chemother 1995;35:873–878.Google Scholar
  34. 34.
    Shah A, Lettieri J, Kaiser L, Echols R, Heller AH. Comparative pharmacokinetics and saftey of ciprofloxacin 400 mg iv thrice daily versus 750 mg po twice daily. J Antimicrobial Chemother 1994;33:795–801.Google Scholar
  35. 35.
    Catchpole C, Andrews JM, Woodcock J, Wise R. The comparative pharmacokinetics and tissue penetration of single-dose ciprofloxacin 400 mg iv and 750 mg po. J Antimicrobial Chemother 1994;33:103–110.Google Scholar
  36. 36.
    Echols RM. The selection of appropriate dosages for intravenous ciprofloxaxin. J Antimicrobial Chemother 1993;31:783–787.Google Scholar
  37. 37.
    Gould IM, Milne K, Jason C. Concentration-dependent bacterial killing, adaptive resistance and post-antibiotic effect of ciprofloxacin alone and in combination with gentamicin. Drugs Exp Clin Res 1990;16:621–628.PubMedGoogle Scholar
  38. 38.
    Craig WA, Vogelman B. The postantibiotic effect. Ann Intern Med 1987;106:900–902.PubMedGoogle Scholar
  39. 39.
    Bustamante CI, Wharton RC, Wade JC. In vitro activity of ciprofloxacin in combination with ceftazidime, aztreonam, and azlocillin against multiresistant isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990;34:1814–1815.PubMedGoogle Scholar
  40. 40.
    Orlando PL, Barriere SL, Hindier JA, Frost RW. Serum bactericidal activity from intravenous ciprofloxacin and azlocillin given alone and in combination to healthy subjects. Diagn Microbiol Infect Dis 1990:13:93–97.PubMedGoogle Scholar
  41. 41.
    Bosso JA, Saxon BA, Matsen JM. In vitro activities of combinations of aztreonam, ciprofloxacin, and ceftazidime against clinical isolates of Pseudomonas aeruginosa and Pseudomonas cepacia from patients with cystic fibrosis. Antimicrob Agents Chemother 1990;34:487–488.PubMedGoogle Scholar
  42. 42.
    Eliopoulos GM, Eliopoulos CT. Ciprofloxacin in combination with other antimicrobials. Am J Med 1989;87:17S–22S.PubMedGoogle Scholar
  43. 43.
    Meyer RD, Liu S. In vitro synergy studies with ciprofloxacin and selected β-lactam agents and aminoglycosides against multidrug-resistant Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 1988;11:151–157.PubMedGoogle Scholar
  44. 44.
    Stratton CW, Franke JJ, Weeks LS, Manion FA. Comparison of the bactericidal activity of ciprofloxacin alone and in combination with selected antipseudomonal β-lactam agents against clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 1988;11:41–52.PubMedGoogle Scholar
  45. 45.
    Fuursted K, Gerner-Smidt P. Analysis of the interaction between piperacillin and ciprofloxacin or tobramycin against thirteen strains of Pseudomonas aeruginosa, using killing curves. Acta Pathol Microbiol Immunol Scan B, Microbiol 1987;95:193–197.Google Scholar
  46. 46.
    Giamarellou H, Petrikkos G. Ciprofloxacin interactions with imipenem and amikacin against multiresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987:31:959–961.PubMedGoogle Scholar
  47. 47.
    Bustamante CI, Drusano GL, Wharton RC, Wade JC. Synergism of the combinations of imipenem plus ciprofloxacin and imipenem plus amikacin against Pseudomonas aeruginosa and other bacterial pathogens. Antimicrob Agents Chemother 1987;31:632–634.PubMedGoogle Scholar
  48. 48.
    Chin NX, Neu HC. Synergy of imipenem — a novel carbapenem, and rifampin and ciprofloxacin against Pseudomonas aeruginosa, Serrada marcescens and Enterobacter species. Chemotherapy 1987;33:183–188.PubMedGoogle Scholar
  49. 49.
    Moody JA, Gerding DN, Peterson LR. Evaluation of ciprofloxacin’s synergism with other agents by multiple in vitro methods. Am J Med 1987;82(Suppl. 4A):44–54.PubMedGoogle Scholar
  50. 50.
    Gereeker AA, Gurler B. In-vitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa. J Antimicrob Chemother 1995;36:707–711.Google Scholar
  51. 51.
    Day CA, Marceau-Day ML, Day DF. Increased susceptibility of Pseudomonas aeruginosa to ciprofloxacin in the presence of vancomycin. Antimicrob Agents Chemother 1993;37:2506–2508.PubMedGoogle Scholar
  52. 52.
    Guerillot F, Carret G, Flandrois JP. A statistical evaluation of the bactericidal effects of ceftibuten in combination with aminoglycosides and ciprofloxacin. J Antimicrob Chemother 1993;32:685–694.PubMedGoogle Scholar
  53. 53.
    Unal S, Flokowitsch J, Mullen DL, Preston DA, Nicas TI. In-vitro synergy and mechanism of interaction between vancomycin and ciprofloxacin against enterococcal isolates. J Antimicrob Chemother 1993;31:711–723.PubMedGoogle Scholar
  54. 54.
    Houvinen P, Wolfson JS, Hooper DC. Synergism of trimethoprim and ciprofloxacin in vitro against clinical bacterial isolates. Eur J Clin Microbiol Infect Dis 1992;11:255–257.Google Scholar
  55. 55.
    Esposito S, Gupta A, Thadepalli H. In vitro synergy of ciprofloxacin and three other antibiotics against Bacteroides fragilis. Drugs Exp Clin Res 1987;13:489–492.PubMedGoogle Scholar
  56. 56.
    Whiting JL, Cheng N, Chow AW. Interactions of ciprofloxacin with clindamycin, metronidazole, cefoxitin, cefotaxime, and mezlocillin against gram-positive and gram-negative anaerobic bacteria. Antimicrob Agents Chemother 1987;31;1379–1382.PubMedGoogle Scholar
  57. 57.
    Coronado VG, Edwards JR, Culver DH, Gaynes RP. Ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. National Nosocomial Infections Surveillance (NNIS) System. Infect Control Hosp Epidemiol 1995;16:71–75.Google Scholar
  58. 58.
    Schwartz MT, Calvert JF. Potential neurologic toxicity related to ciprofloxacin. DICP 1990;24:138–140.PubMedGoogle Scholar
  59. 59.
    Traeger SM, Bonfiglio MF, Wilson JA, Martin BR, Nackes NA. Seizures associated with ofloxacin therapy. Clin Infect Dis 1995;21:1504–1506.PubMedGoogle Scholar
  60. 60.
    Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. DICP 1990;24:595–596.PubMedGoogle Scholar
  61. 61.
    G.D. Searle & Co. Package literature for Maxaquin. February, 1995.Google Scholar
  62. 62.
    Rhone-Poulenc Rorer Pharmaceuticals Inc. Package literature for Zagam. November, 1996.Google Scholar
  63. 63.
    Domagala JM. Relationship of quinolone structure to side effects. J Antimicrob Chemother 1994;33:685–706.PubMedGoogle Scholar
  64. 64.
    Grasela TH, Schentag JJ, Sedman AJ, et al. Inhibition of enoxacin absorption by antacids or ranitidine. Antimicrob Agents Chemother 1989;33:615–617.PubMedGoogle Scholar
  65. 65.
    Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989;46:700–705.PubMedGoogle Scholar
  66. 66.
    Van Slooten AD, Nix DE, Wilton JH, et al. Combined use of ciprofloxacin and sucralfate. Ann Pharmacother 1991;25:578–582.Google Scholar
  67. 67.
    Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 1993;53:292–297.PubMedGoogle Scholar
  68. 68.
    Polk RE, Healy DP, Sahal J, et al. Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother 1989;33: 1841–1844.PubMedGoogle Scholar
  69. 69.
    Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Phamacokinet 1993;25:450–482.Google Scholar
  70. 70.
    Barnett G, Segura J, De La Torre R, Carbo M. Pharmacokinetic determination of relative potency of quinolone inhibition of caffeine metabolism. Eur J Clin Pharmacol 1990;39:63–69.PubMedGoogle Scholar
  71. 71.
    Healy DP, Polk RE, Kanawati L, et al. Interaction between ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother 1989;33:474–478.PubMedGoogle Scholar
  72. 72.
    Harder S, Staib AH, Beer C, et al. 4-Quinolones inhibit biotransformation of caffeine. Eur J Clin Pharmacol 1988;35:651–656.PubMedGoogle Scholar
  73. 73.
    McCormack JP, Jewesson PJ. A critical reevaluation of the therapeutic range of aminoglycosides. Clin Infect Dis 1992;14:320–339.PubMedGoogle Scholar
  74. 74.
    Daikos GL, Jackson GG, Lolans VT, Livermore DL. Adaptive resistance to aminoglycoside antibiotics from first exposure down-regulation. J Infect Dis 1990;162:414–420.PubMedGoogle Scholar
  75. 75.
    Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1984;25:433–437.Google Scholar
  76. 76.
    Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother 1995;39:650–655.PubMedGoogle Scholar
  77. 77.
    Kapusnik JE, Hackbarth CJ, Chambers HF, Carpenter T, Sande MA. Single, large, daily dosing versus intermittent dosing of tobramycin for treating experimental pseudomonas pneumonia. J Infect Dis 1988;158:7–12.PubMedGoogle Scholar
  78. 78.
    Anonymous. Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Ann Intern Med 1993;119:584–593.Google Scholar
  79. 79.
    Eliopoulos GM, Eliopoulos CT. Therapy of enterococcal infections. Eur J Clin Microbiol Infect Dis 1990;9:118–126.PubMedGoogle Scholar
  80. 80.
    Orlando PL, Barriere SL, Hindier JA, Frost RW. Serum bactericidal activity from intravenous ciprofloxacin and azlocillin given alone and in combination to healthy subjects. Diagn Microbiol Infect Dis 1990;13:93–97.PubMedGoogle Scholar
  81. 81.
    Eliopoulos GM, Eliopoulos CT. Ciprofloxacin in combination with other antimicrobials. Am J Med 1989;87(Suppl. 5A):17S–22S.PubMedGoogle Scholar
  82. 82.
    Gerding DN, Larson TA, Hughes RA, Weiler M, Shanholtzer C, Peterson LR. Aminoglycoside resistance and aminoglycoside usage: Ten years of experience in one hospital. Antimicrob Agents Chemother 1991;35:1284–1290.PubMedGoogle Scholar
  83. 83.
    Ristuccia AM, Cunha BA. An overview of amikacin. Therap Drug Monitor 1985;7:12–25.Google Scholar
  84. 84.
    Lietman PS, Smith CR. Aminoglycoside nephrotoxicity in humans. Rev Infect Dis 1983;5:S284–S292.Google Scholar
  85. 85.
    Ervin FR, Bullock WE, Nuttall CE. Inactivation of gentamicin by penicillins in patients with renal failure. Anitimicrob Agents Chemother 1976;9:1004–1011.Google Scholar
  86. 86.
    Halstenson CE, Wong MO, Herman CS, et al. Effect of concomitant administration of piperacillin on the dispositions of isepamicin and gentamicin in patients with end-stage renal disease. Antimicrob Agents Chemother 1992;36:1832–1836.PubMedGoogle Scholar
  87. 87.
    Wade JC, Schimpff SC, Newman KA, Wiernik PH. Staphylococcus epidermicas: An increasing cause of infection in patients with granulocytopenia. Ann Intern Med 1982; 97:503–508.PubMedGoogle Scholar
  88. 88.
    Rubin M, Hathorn JW, Marshall D, Gress J, Steinberg SM, Pizzo PA. Gram-positive infections and the use of vancomycin in 550 episodes of fever and neutropenia, Ann Intern Med 1988;108:30–35.PubMedGoogle Scholar
  89. 89.
    Centers for Disease Control and Prevention. Recommendations for Preventing the Spread of Vancomycin Resistance Recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). September 22, 1995, Vol. 44, No. RR-12, p. 4.Google Scholar
  90. 90.
    Matzke GR. Vancomycin. In: Evans WE, Schentag JC, Jusko W, eds. Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring, 3rd ed. Spokane, WA: Applied Therapeutics, 1992.Google Scholar
  91. 91.
    Watanakunakorn C. The antibacterial action of vancomycin. Rev Infect Dis 1981;3:S21–S215.Google Scholar
  92. 92.
    McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977;135:217–223.PubMedGoogle Scholar
  93. 93.
    Cantu TG, Yamanaka-Yuen A, Lietman P. Serum vancomycin concentrations: Reappraisal of their clinical value. Clin Infect Dis 1994;18:533–543.PubMedGoogle Scholar
  94. 94.
    Cimino MA, Rotstein C, Slaughter RL, Emrich LJ. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med 1987;83:1091–1097.PubMedGoogle Scholar
  95. 95.
    Healy DP, Sahal JV, Fuller SH, Polk RE. Vancomycin-induced histamine release and “red man syndrome”: Comparison of 1-and 2-hour infusions. Antimicrob Agents Chemother 1990;34:55–554.Google Scholar
  96. 96.
    Sahai J, Healy DP, Garris R, Berry A, Polk RE. Influence of antihistamine pretreatment on vancomycin-induced red-man syndrome. J Infect Dis 1989;160:876–881.PubMedGoogle Scholar
  97. 97.
    Moellering RC. Monitoring serum vancomycin levels: Climbing the mountain because it is there? Clin Infect Dis 1994;18:544–546.PubMedGoogle Scholar
  98. 98.
    Walsh TJ, Lee JW. Prevention of invasive fungal infections in patients with neoplastic disease. Clin Infect Dis 1993;17(Suppl. 2):S468–S480.PubMedGoogle Scholar
  99. 99.
    Armstrong D. Infections in patients with neoplastic disease. In: Schlossberg D, ed. Current Therapy of Infectious Disease. St. Louis, MO: Mosby-Year Book, 1996, pp. 294–296.Google Scholar
  100. 100.
    Sable CA, Donowitz GR. Infections in bone marrow transplant patients. Clin Infect Dis 1994;18:273–284.PubMedGoogle Scholar
  101. 101.
    AHFS 97 Drug Information. Washington DC: American Society of Hospital Pharmacists, 1997, pp. 74–101.Google Scholar
  102. 102.
    Bennett JE. Antifungal agents. In: Hardman JG, Limbird LE, eds. Goodman and Gilman’s The Pharmacologic Basis of Therapeutics, 9th ed. New York: McGraw-Hill, 1996, pp. 1175–1190.Google Scholar
  103. 103.
    Armstrong D. History of opportunistic infection in the immunocompromised host. Clin Infect Dis 1993;17(Suppl. 2):S318–S321.PubMedGoogle Scholar
  104. 104.
    Walzer P, Whimbey E. Overview of prevention of infections in the immunocompromised patient. Clin Infect Dis 1993;17(Suppl. 2):S376–S377.Google Scholar
  105. 105.
    Vartivarian SE, Anaissie EJ, Bodey GP. Emerging fungal pathogens in immunocompromised patients: Classification, diagnosis, and management. Clin Infect Dis 1993;17(Suppl. 2):S487–S491.PubMedGoogle Scholar
  106. 106.
    Sterling TR, Gasser RA, Ziegler A. Emergence of resistance to amphotericin B during therapy for Candida glabrata infection in an immunocomprised host. Clin Infect Dis 1996;23:187–188.PubMedGoogle Scholar
  107. 107.
    Nguyen MH, Peacock JE, Morris AJ, et al. The changing face of candidemia: Emergence of non-Candida albicans species and antifungal resistance. Am J Med 1996;100:617–623.PubMedGoogle Scholar
  108. 108.
    Schmitt HJ. New methods of delivery of amphotericin B. Clin Infect Dis 1993;17(Suppl. 2):S501–S506.PubMedGoogle Scholar
  109. 109.
    Anonymous. Systemic antifungal drugs. Medical Lett Drugs Ther 1997;39:86–88.Google Scholar
  110. 110.
    Gigliotti F, Shenap JL, Lott L, et al. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. J Infect Dis 1987;156:784–789.PubMedGoogle Scholar
  111. 111.
    Burks LC, Aisner J, Fortner CL, et al. Meperidine for the treatment of shaking chills and fever. Arch Intern Med 1980;140:483–484.PubMedGoogle Scholar
  112. 112.
    Ellis ME, Al-Hokail AA, Clink HM, et al. Double-blind randomized study of the effect of the infusion rates on toxicity of amphotericin B. Antimicrob Agents Chemother 1992;36: 172–179.PubMedGoogle Scholar
  113. 113.
    Feely J, Heidemann H, Gerkins J, et al. Sodium depletion enhances nephrotoxicity of amphotericin B. Lancet 1981;1(8235):1420–1421.Google Scholar
  114. 114.
    Stein RS, Alexander JA. Sodium protects against nephrotoxicity in patients receiving amphotericin B. Am J Med Sci 1989;298:299–304.PubMedGoogle Scholar
  115. 115.
    Heidemann HT, Gerkins JF, Spickard WA, et al. Amphotericin B nephrotoxicity in humans decreased by salt repletion. Am J Med Sci 1983;75;476–481.Google Scholar
  116. 116.
    MacGregor RR, Bennett JE, Erslev AJ. Erythropoietin concentration in amphotericin B-induced anemia. Antimicrob Agents Chemother 1978;14:270–273.PubMedGoogle Scholar
  117. 117.
    Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 1979;301:126–131.PubMedGoogle Scholar
  118. 118.
    Gillum JG, Israel DS, Polk RE. Pharmacokinectic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993;25:450–482.PubMedGoogle Scholar
  119. 119.
    Janknegt R, de Marie S, Bakker-Woudenberg IA, et al. Liposomal and lipid formulations of amphotericin B. Clin Pharmacokinet 1992;23:279–291.PubMedGoogle Scholar
  120. 120.
    de Marie S, Janknegt R, Bakker-Woudenberg IA. Clinical use of liposomal and lipid-complexed amphotericin B. J Antimicrob Chemother 1994;33:907–916.PubMedGoogle Scholar
  121. 121.
    Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: Recent progress and future directions. Clin Infect Dis 1996;22(Suppl. 2):S133–S144.PubMedGoogle Scholar
  122. 122.
    Goodman JL, Winston DJ, Greenfield RA, et al. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med 1992;326:845–851.PubMedGoogle Scholar
  123. 123.
    Winston DJ, Chandrasekar PH. Antimicrobial prophylaxis in bone marrow transplantation. Ann Intern Med 1995;123:305–315.Google Scholar
  124. 124.
    Momin F, Chandrasekar PH. Antimicrobial prophylaxis in bone marrow transplantation. Ann Intern Med 1995;123:205–215.PubMedGoogle Scholar
  125. 125.
    Saag MS, Powderly WG, Cloud GA, et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. N Engl J Med 1992;326:83–89.PubMedGoogle Scholar
  126. 126.
    Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994;330:263–272.PubMedGoogle Scholar
  127. 127.
    Borgers M. Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 1980;2:520–534.PubMedGoogle Scholar
  128. 128.
    Koll BS, Brown AE. The changing epidemiology of infections at cancer hospitals. Clin Infect Dis 1993;17(Suppl. 2):S322–S328.PubMedGoogle Scholar
  129. 129.
    Pappas PG, Kauffman CA, Perfect J, et al. Alopecia associated with fluconazole therapy. Ann Intern Med 1995;123:354–357.PubMedGoogle Scholar
  130. 130.
    Trapnell CB, Narang PK, Li R, et al. Increased plasma rifabutin levels with concomitant fluconazole therapy in HIV-infected patients. Ann Intern Med 1996;124:573–576.PubMedGoogle Scholar
  131. 131.
    Narang PK, Trapnell CB, Schoenfelder JR, et al. Fluconazole and enhanced effect of rifabutin prophylaxis. N Engl J Med 1994;330:316–317.Google Scholar
  132. 132.
    Havlir D, Torriani F, Dube M. Uveitis associated with rifabutin prophylaxis. Ann Intern Med 1994;121:510–512.PubMedGoogle Scholar
  133. 133.
    Olkkola KT, et al. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994;55:481.PubMedGoogle Scholar
  134. 134.
    Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994;56:601–607.PubMedGoogle Scholar
  135. 135.
    AHFS 97 Drug Information. Washington DC: American Society of Hospital Pharmacists, 1997, pp. 440–484.Google Scholar
  136. 136.
    Hayden FG. Antiviral agents. In: Hardman JG, Limbird LE, eds. Goodman and Gilman’s The Pharmacologic Basis of Therapeutics, 9th ed. New York: McGraw-Hill, 1996, pp. 1191–1223.Google Scholar
  137. 137.
    Weiler S, Blum R, Doucette M, et al. Pharmacokinetics of the acyclovir pro-drug valacyclovir after escalating single-and multiple-dose administration to normal volunteers. Clin Pharmacol Ther 1993;54:595–605.Google Scholar
  138. 138.
    Centers for Disease Control and Prevention. 1993 Sexually transmitted diseases and treatment guidelines. MMWR 1993;42:1–102.Google Scholar
  139. 139.
    Whitley RJ, Gnann JW Jr. Acyclovir: A decade later. N Engl J Med 1992;327:782–789.PubMedGoogle Scholar
  140. 140.
    McGill HI, White JE. Acyclovir and post-herpetic neuralgia and ocular involvement. Br Med J 1994;309:1124.Google Scholar
  141. 141.
    Kost RG, Hill EL, Tigges M, et al. Recurrent acyclovir-resistant genital herpes in an immunocompetent patient. N Engl J Med 1993;329:1777–1782.PubMedGoogle Scholar
  142. 142.
    Collier AC, Bozzette S, Coombs RW, et al. A pilot study of low-dose zidovudine in human immunodeficiency virus infection. N Engl J Med 1990;323:1015–1021.PubMedGoogle Scholar
  143. 143.
    The Oral Ganciclovir European and Australian Cooperative Study Group. Intravenous versus oral ganciclovir: European/Australian comparative study of efficacy and safety in the prevention of cytomegalovirus retinitis recurrence in patients with AIDS. AIDS 1995;9:471–477.Google Scholar
  144. 144.
    Goodrich JM, Bowden RA, Fisher L, et al. Ganciclovir prophylaxis to prevent cytomegalovirus after allogenic marrow transplant. Ann Intern Med 1993;118:173–178.PubMedGoogle Scholar
  145. 145.
    Goodrich JM, Mori M, Gleaves CA, et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogenic bone marrow transplantation. N Engl J Med 1991;325:1601–1607.PubMedGoogle Scholar
  146. 146.
    Barton TL, Roush MK, Dever LL. Seizures associated with ganciclovir therapy. Pharmacotherapy 1992;12:413–415.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1998

Authors and Affiliations

  • Michael Postelnick
  • Sara R. Halbur

There are no affiliations available

Personalised recommendations