• Harry A. J. Struijker Boudier
  • Frank R. M. Stassen
  • Ferdinand A. C. le Noble
Part of the Basic Science for the Cardiologist book series (BASC, volume 1)


The regulation of the architecture of the vascular system is an exiting and important area of research in developmental and vascular biology. The formation of blood vessels is a vital process in embryonic development and in physiological repair processes, such as wound healing and cyclical adaptations in the endometrium during the menstrual cycle. Disturbed vascular growth is now regarded as a key event in a variety of pathologies. Uninhibited blood vessel growth has been associated with various neoplastic and non-neoplastic diseases. This is widely accepted for tumor growth and diabetic retinopathy, but is now also believed to occur in psoriasis, atherosclerotic plaque growth and rheumatoid arthritis [1]. A lack of blood vessel growth is a key event in other pathologies. Certain developmental disorders, such as bowel atresia and unilateral facial atrophy, may arise from abnormal vascular development [1].


Vascular Endothelial Growth Factor Vascular Smooth Muscle Cell Vascular Development Vascular Growth Mural Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman J. Clinical applications of research on angiogenesis. New Engl J Med 1995;333:1757–1763.PubMedCrossRefGoogle Scholar
  2. 2.
    Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996;79:911–919.PubMedGoogle Scholar
  3. 3.
    Fujita M, Ohno A, Wada O, Miwa K, Nozawa T, Yamanishi K, Sasayama S. Collateral circulation as a marker of the presence of viable myocardium in patients with recent myocardial infarction. Am Heart J 1991;122:409–414.PubMedCrossRefGoogle Scholar
  4. 4.
    Le Noble FAC, Stassen FRM, Hacking WJG, Struijker Boudier HAJ. Angiogenesis and hypertension. J Hypertens, 1998, in press.Google Scholar
  5. 5.
    Folkman J Szabo S, Stovroff M, McNeil P, Li W, Shing Y. Duodenal ulcer: discovery of a new mechanism and development of angiogenic therapy which accelerates healing. Ann Surg 1991;214:414–427PubMedCrossRefGoogle Scholar
  6. 6.
    Risau W. Mechanisms of angiogenesis. Nature1997;386:671–674.PubMedCrossRefGoogle Scholar
  7. 7.
    Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995;11:73–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergwerff M, De Ruiter MC, Poelmann RE, Gittenberger-de Groot AC. Onset of elastogenesis and downregulation of smooth muscle actin as distinguishing phenomena in artery differentiation in the chick embryo. Anat Embryol 1996;194:545–557.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996;32:687–699.PubMedCrossRefGoogle Scholar
  10. 10.
    De Ruiter MC, Hogers B, Poelmann RE, Van Iperen L, Gittenberger-de Groot AC. The development of the vascular system in quail embryos: a combination of microvascular corrosion casts and immunohistochemical identification. Scanning Micr 1992;5:1082–1090.Google Scholar
  11. 11.
    Campbell GR, Campbell JH. Development of the vessel wall: overview. In: The vascular smooth muscle cell (Schwartz SM, Mecham RP, eds). San Diego: Academic Press, 1995;1–17Google Scholar
  12. 12.
    De Ruiter MC, Poelmann RE, Van Munsteren JC et al. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 1997;80:444–451.Google Scholar
  13. 13.
    Gittenberger-de Groot AC, Slomp J, De Ruiter MC, Poelmann RE. Smooth muscle cell differentiation during early development and during intimai thickening formation in the ductus arteriosus. In: The vascular smooth muscle cell (Schwartz SM, Mecham RP, eds). San Diego: Academic Press, 1995;17–37.Google Scholar
  14. 14.
    Katoh Y, Periasamy M. Growth and differentiation of smooth muscle cells during vascular development. Trends Cardiovasc Med 1996;6:100–106.CrossRefGoogle Scholar
  15. 15.
    Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 1992;72:369–417.PubMedGoogle Scholar
  16. 16.
    Moreau P, Tea B-S, Dam T-V, Hamet P. Altered balance between cell replication and apoptosis in hearts and kidneys of newborn SHR. Hypertension 1997;30(part 2):720–724.PubMedGoogle Scholar
  17. 17.
    Cockerill GW, Gamble JR, Vadas MA. Angiogenesis: models and modulators. Int Rev Cytol 1995;159:113–160.PubMedCrossRefGoogle Scholar
  18. 18.
    Jain RK, Schlenger K, Höckel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med 1997;3:1203–1208.PubMedCrossRefGoogle Scholar
  19. 19.
    Hudlicka O, Brown MD, Egginton S. Angiogenesis: basic concepts and methodology. In: An introduction to vascular biology (Halliday A, Hunt BJ, Poston L, Schachter M, eds). Cambridge: University Press, 1998;3–20.Google Scholar
  20. 20.
    Iba T, Sain T, Sonoda T, Rosales O, Sumpio BE. Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J Surg Res 1991;50:45–60.CrossRefGoogle Scholar
  21. 21.
    Auerbach R, Auerbach W, Polakowski A. Assays for angiogenesis: a review. Pharmacol Ther 1991;51:1–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Le Noble FAC, Kessels-van Wylick LCGA, Hacking WJG, Slaaf DW, oude Egbrink MGA, Struijker Boudier HAJ. The role of angiotensin II and prostaglandins in arcade formation in a developing microvascular network. J Vasc Res 1996;33:480–488.PubMedGoogle Scholar
  23. 23.
    Andrade SP, Fan TPD, Lewis GP. Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 1987;68:755–766.PubMedGoogle Scholar
  24. 24.
    Thoma R. Untersuchungen über die Histogenese and Histomechanik des Gefässsystems. Stuttgart: F Enke, 1893.Google Scholar
  25. 25.
    Carmeliet P, Collen D. Genetic analysis of blood vessel formation. Role of endothelial versus smooth muscle cells. Trends Cardiovasc Med 1997;7:271–281.CrossRefGoogle Scholar
  26. 26.
    Struijker Boudier HAJ, Crijns FRL, Stolte J, Van Essen H. Assessment of the microcirculation in cardiovascular disease. Clin Sci 1996;91:131–139.PubMedGoogle Scholar
  27. 27.
    Murray CD. The physiological principle of minimum work. 1. The vascular system and the cost of blood volume. Proc nat Acad Sci USA 1926;12:207–214.PubMedCrossRefGoogle Scholar
  28. 28.
    Glagov S, Vito R, Giddens DP, Zarins CK. Micro-architecture and composition of artery walls: relationship to location, diameter and the distribution of mechanical stress. J Hypertens 1992;10(suppl 6):101–104.Google Scholar
  29. 29.
    Koller A, Kaley G. Shear stress dependent regulation of vascular resistance in health and disease: role of endothelium. Endothelium 1996;4:247–272.CrossRefGoogle Scholar
  30. 30.
    .Skalak TC, Price RJ. The role of mechanical stresses in microvascular remodeling. Microcirculation 1996;3:143–165.PubMedGoogle Scholar
  31. 31.
    Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 1996;32:654–667.PubMedCrossRefGoogle Scholar
  32. 32.
    Hacking WJG, Van Bavel E, Spaan JAE. Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 1996;270:H364–H375.PubMedGoogle Scholar
  33. 33.
    Struijker Boudier HAJ, Le Noble JLML, Messing MWJ et al. The microcirculation and hypertension. J Hypertens 1992;10(suppl 7):147–156.Google Scholar
  34. 34.
    Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75:519–560PubMedGoogle Scholar
  35. 35.
    Joukov V, Pajusola K, Kaipanen A et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15:290–298.PubMedGoogle Scholar
  36. 36.
    BeckJr, L, D’Amore PA. Vascular development: cellular and molecular regulation. FASEB J 1997; 11:365–373.Google Scholar
  37. 37.
    Dickson MC, Martin JS, Cousins FM, Kulkarni AB et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-ßl knock-out mice. Development 1995;121:1845–1854.PubMedGoogle Scholar
  38. 38.
    Davis S, Aldrich TH, Jones PF et al. Isolation of angiopoietin-1, a ligand for the angiogenic TIE-2 receptor by secretion-trap expression cloning. Cell 1996;87:1161–1169.PubMedCrossRefGoogle Scholar
  39. 39.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S et al. Angiopoietin-2, a natural antagonist for TIE-2 that disrupts in vivo angiogenesis. Science 1997;277:55–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE-2 receptor, during embryonic angiogenesis. Cell 1996;87:1171–1180.PubMedCrossRefGoogle Scholar
  41. 41.
    Vikkula M, Boon LM, Carraway KL et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE-2. Cell 1996;87:1181–1190.PubMedCrossRefGoogle Scholar
  42. 42.
    Clark RAF, Tonnesen MG, Gailit J, Cheresh DA. Transient functional expression of □v3 on vascular cells during wound repair. Am J Pathol 1996;148:1407–1421.PubMedGoogle Scholar
  43. 43.
    Brooks PC, Montgomery AMP, Rosenfeld M et al. Integrin αvß3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–1164.PubMedCrossRefGoogle Scholar
  44. 44.
    Drake CJ, Cheresh DA, Little CD. An antagonist of integrin αvß3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 1995;108:2655–2661.PubMedGoogle Scholar
  45. 45.
    Pepper MS. Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vasc Biol 1997; 17:605–619.PubMedGoogle Scholar
  46. 46.
    Fan TD, Jaggar R, Bicknell R. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 1995;16:57–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Sellke FW, Wang SY, Stamler A et al. Enhanced microvascular relaxations to VEGFand bFGF in chronically ischemic porcine myocardium. Am J Physiol 1996;271:H713–H720.PubMedGoogle Scholar
  48. 48.
    Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995; 1:996–997.CrossRefGoogle Scholar
  49. 49.
    Harada K, Friedman M, Lopez JJ, Wang SY et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996;270:H1791–H1802.PubMedGoogle Scholar
  50. 50.
    Landau C, Jacobs AK, Haudenschild CC. Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am Heart J 1995; 129:924–931.PubMedCrossRefGoogle Scholar
  51. 51.
    Takeshita S, Zheng LP, Brogi E, Kearney M et al. Therapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J Clin Invest 1994;93:662–670.PubMedGoogle Scholar
  52. 52.
    Takeshita S, Rossow ST, Kearney M et al. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 1995; 147:1649–1660.PubMedGoogle Scholar
  53. 53.
    Bauters C, Asahara T, Zheng LP et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 1995;91:28–2–2809.Google Scholar
  54. 54.
    Yang HT, Deschenes MR, Ogilvie RW. Terjung RL. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 1996;79:62–69.PubMedGoogle Scholar
  55. 55.
    Asahara T, Bauters C, Zheng LP et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995;92(suppl 2):365–371.Google Scholar
  56. 56.
    Baumgartner I, Pieczel A, Manor O et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998;97:1114–1123.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Harry A. J. Struijker Boudier
    • 1
  • Frank R. M. Stassen
    • 1
  • Ferdinand A. C. le Noble
    • 1
  1. 1.Department of PharmacologyCardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands

Personalised recommendations