Angiogenic Growth Factors

  • Cedric J. Gaultier
  • Jean-Baptiste Michel
Part of the Basic Science for the Cardiologist book series (BASC, volume 1)


Hitherto, formation of new blood vessels was usually classified into two well-known embryological phenomenons: vasculogenesis and angiogenesis. Vasculogenesis is described as a primary in situ differentiation of endothelial cells from mesodermal precursors, leading to the formation of primary capillary poleaxe. Angiogenesis was thought to be exclusively the result of vessels’ sprouting from pre-existing vessels. But recently, Asahara et al. have showed that circulating endothelial cell progenitors are also involved in the angiogenic process [1]. Concerning collateral vessel formation, a third concept, called “arteriogenesis” has been introduced by Schapper [2]. It consists of the remodeling of small capillaries into larger arterioles, with a muscular layer. Nevertheless, those three entities require:
  • proliferation and migration with a spatial organisation of endothelial cells

  • dissolution and regeneration of the vascular extracellular matrix, considered as vascular stake

  • participation of mesenchymal perivascular cells (smooth muscle cells and pericytes)



Endothelial Cell Smooth Muscle Cell Fibroblast Growth Factor Platelet Derive Growth Factor Vascular Endothelial Growth Factw Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asahara T, Murohara T, Sullivan A, Silver M, Van der Zee R, LI T, Witzenbichler B, Schatteman G, Isner J. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.PubMedCrossRefGoogle Scholar
  2. 2.
    Schaper W, Ito W. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996;79:911–919.PubMedGoogle Scholar
  3. 3.
    Pepper M. Manipulating angiogenesis: from basic science to the bedside. Arterioscler Thromb Vasc Biol 1997; 17:605–619.PubMedGoogle Scholar
  4. 4.
    Bischoff J. Cell adhesion and angiogenesis (Perspectives series: cell adhesion in vascular biology). J Clin Invest 1997;100(11S)Suppl:37S–39S.Google Scholar
  5. 5.
    Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Voldavsky I. Heparin-binding angiogenic protein-basic fibroblast growth factor is stored within basement membrane. Am J Pathol 1988; 130:393–400.PubMedGoogle Scholar
  6. 6.
    Folkman J, Shing Y. Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol 1992;313:355–364.PubMedGoogle Scholar
  7. 7.
    Sasisekharan R, Moses M, Nugent M, Cooney C. Heparinase inhibits neovascularization. Proc Natl Acad Sci USA1994;91:1524–1528.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Reilly M, Boehm T, Shing Y, Fukai N, Vasios G, Lane W, Flynn E, Birkhead J, Olsen B, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277–285.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Angelo G, Struman I, Martial J, Weiner RI. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci USA1995;92:6374–6378.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrara N. Vascular endothelial growth factor. Trend Cardiovasc Med 1993; 3:244–250.CrossRefGoogle Scholar
  11. 11.
    Maglione D, Guerrerio V, Viglietto G, Delli-Bovi P, Persico M. Isolation of a human placenta cDNA coding for a protein related to vascular endothelial growth factor. Proc Natl Acad Sci USA 1991;88:9267–9271.PubMedCrossRefGoogle Scholar
  12. 12.
    Olofsson B, Pajusola K, Kaipainen A, Voneuler G, Joukov V, Saksela O, Orpana A, Petersson RF, Alitalo K, Eriksson U. Vascular Endothelial Growth Factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 1996;93:2576–2581.PubMedCrossRefGoogle Scholar
  13. 13.
    Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. Anovel Vascular Endothelial Growth Factor, Vegf-C, is a ligand for the Flt4 (Vegfr-3) and Kdr (Vegfr-2) receptor tyrosine kinases. EMBO Journal 1996;15:290–298.PubMedGoogle Scholar
  14. 14.
    Achen M, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks A, Alitalo K, Stacker S. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 1998;95(2):548–553.PubMedCrossRefGoogle Scholar
  15. 15.
    Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995;270:13333–13340.PubMedCrossRefGoogle Scholar
  16. 16.
    Ikeda E, Achen MG, Breier G, Risau W. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995;270:19761–19766.PubMedCrossRefGoogle Scholar
  17. 17.
    Pueyo M, Chen Y, D’Angelo G, Michel JB. Regulation of vascular endothelial growth factor expression by AMPc in rat aortic smooth muscle cells. Exp Cell Res 1998;238:354–358.PubMedCrossRefGoogle Scholar
  18. 18.
    Adair T, Gay W, Montani J. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol 1990;259:R393–R404.PubMedGoogle Scholar
  19. 19.
    Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 1995;92:11–14.PubMedGoogle Scholar
  20. 20.
    Stavri GT, Hong Y, Zachary IC, Breier G, Baskerville PA, Yla-Herttuala S, Risau W, Martin JF, Erusalimsky JD. Hypoxia and platelet-derived growth factor-BB synergistically upregulate the expression of vascular endothelial growth factor in vascular smooth muscle cells. FEBS Letters 1995;358:311–315.PubMedCrossRefGoogle Scholar
  21. 21.
    Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 1994;90:649–652.PubMedGoogle Scholar
  22. 22.
    Shoji M, Abe K, Nawroth P, Rickles F. Molecular mechanisms linking thrombosis and angiogenesis in cancer. Trends Cardiovas Med 1997;7:52–59.CrossRefGoogle Scholar
  23. 23.
    Shibuya M. Role of VEGF-flt receptor system in normal and tumor angiogenesis. [Review]. Adv Cancer Res 1995;67:281–316.PubMedGoogle Scholar
  24. 24.
    Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Fltl, two receptors for vascular endothelial growth factor. J Biol Chem 1994;269:26988–26995.PubMedGoogle Scholar
  25. 25.
    Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Kerlovaara L, Alitalo R, Alitalo K. Flt-4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 1992;52:5738–5742.PubMedGoogle Scholar
  26. 26.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Shalaby F, Ho J, Stanford W, Fischer K, Schuh A, Schwartz L, Bernstein A, Rossant J. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997;89:981–990.PubMedCrossRefGoogle Scholar
  28. 28.
    Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. JClin Invest 1995;95:1798–1807.Google Scholar
  29. 29.
    Van der Zee R, Murohara T, Zhengyu L, Zollmann F, Passeri J, Lekutat C, Isner J. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 1997;95:1030–1037.PubMedGoogle Scholar
  30. 30.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87:3336–3343.PubMedGoogle Scholar
  31. 31.
    Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial gowth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Comm 1992; 189:824–831.PubMedCrossRefGoogle Scholar
  32. 32.
    Spyridopoulos I, Brogi E, Kearney M, Sullivan A, Cetrulo C, Isner J, Losordo D. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J Mol Cell Cardiol 1997;29(5):1321–1330.PubMedCrossRefGoogle Scholar
  33. 33.
    Pepper M, Ferrara N, Orci L, Montesano R. VEGF induces plasminogen activators and plasminogen activator inhibitor type 1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991;181:902–908.PubMedCrossRefGoogle Scholar
  34. 34.
    Unemori E, Ferrara N, Bauer E, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression inhuman endothelial cells. J Cell Physiol 1992;153:557–562.PubMedCrossRefGoogle Scholar
  35. 35.
    Connoly D, Olander J, Heuvelman D, Nelson R, Monsell R, Siegel N, Haymore B, Leimguber R, Feder J. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 1989;264:20017–20024.Google Scholar
  36. 36.
    Ziche M, Morbidelli L, Choudhuri R, Zhang H, Donnini S, Granger H. NO synthase lies downstream from VEGF-induced but not b-FGF-induced Angiogenesis. J Clin Invest 1997;99:2625–2634.PubMedGoogle Scholar
  37. 37.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.PubMedCrossRefGoogle Scholar
  38. 38.
    Takeshita S, Zheng L, Brogi E, Kearney M, Pu L, Bunting S, Ferrara N, Symes J, Isner J. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93:662–670.PubMedGoogle Scholar
  39. 39.
    Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 1995;91:2802–2809.PubMedGoogle Scholar
  40. 40.
    Asahara T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimai hyperplasia in balloon-injured rat carotid artery. Circulation 1995;91:2793–2801.PubMedGoogle Scholar
  41. 41.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–844.PubMedCrossRefGoogle Scholar
  42. 42.
    Miyake A, Konishi M, Martin F, Hernday N, Ozaki K, Yamamoto S, Mikami T, Arakawa T, Itoh N. Structure and expression of a novel member, FGF-16, on the fibroblast growth factor family. Biochem Biophys Res Commun 1998;243:1:148–152.PubMedCrossRefGoogle Scholar
  43. 43.
    Vlodavsky I, Fridman R, Sullivan R, Sasse J, Klagbrun M. Aortic endothelial cells synthetize basic fibroblast growth factor which remains cell associated and platelet-derived factor-like protein which is secreted. J Cell Physiol 1987; 131:402–408.PubMedCrossRefGoogle Scholar
  44. 44.
    Speir E, Sasse J, Shrivastav S, Casscells W. Culture-induced increase in acidic and basic fibroblast growth factor activities and their association with the nuclei of vascular endothelial and smooth muscle cells. J Cell Physiol 1991;147:362–373.PubMedCrossRefGoogle Scholar
  45. 45.
    Baird A, Mormede P, Bohlen P. Immunoreactive fibroblast growth factor in cells of peritoneal exsudate suggests its identity with macrophage-derived growth factor. Biochem biophys Res Commun 1985;126:358–364.PubMedCrossRefGoogle Scholar
  46. 46.
    Abraham J, Mergia A, Whang J, Tumolo A, Friedman J, Hjerrild K, Gospodarowicz D, Fiddes J. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 1986;233:545–548.PubMedCrossRefGoogle Scholar
  47. 47.
    Sterpetti A, Cucina A, Fragale A, Lepidi S, Cavallaro A, Santoro d’Angelo L. Shear stress influences the release of platelet-derived growth factor and basic fibroblast growth factor by arteriel smooth muscle cells. Eur J Vasc Surg 1994;8:138–142.PubMedCrossRefGoogle Scholar
  48. 48.
    Bikfalvi A, Klein S, Pintucci G, Rifkin D. Biological roles of fibroblast growth factor-2. Endocr Rev 1997;18:26–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Casscells W, Speir E, Sasse J, Klagsbrun M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J, Epstein S. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest 1990;85:433–441.PubMedCrossRefGoogle Scholar
  50. 50.
    Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation. J Physiol 1986;128:475–484.Google Scholar
  51. 51.
    Yayon A, Klagsbrun M, Esko J, Leder P, Ornitz D. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor activity. Cell 1991;64:841–848.PubMedCrossRefGoogle Scholar
  52. 52.
    Hughes S, Hall P. Overview of the fibroblast growth factor and receptor families: complexity functional diversity, and implications for future cardiovascular research. Cardiovasc Res 1993;27:1199–1203.PubMedGoogle Scholar
  53. 53.
    Zhou M, Sutliff R, Paul R, Lorenz J, Hoying J, Haudenschild C, Yin M, Coffin J, Kong L, Kranias E, Luo W, Boivin G, Duffy J, Pawlowski S, Doetschman T. Fibroblast growth factor 2 control of vascular tone. Nature Medicine 1998;4(2):201–207.PubMedCrossRefGoogle Scholar
  54. 54.
    Engelmann G, Dionne C, Jaye M. Acidic-fibroblast growth factor and heart development: role in myocyte proliferation and capillary angiogenesis. Circ Res 1993;72:7–19.PubMedGoogle Scholar
  55. 55.
    Montesano R. Regulation of angiogenesis in vitro. Eur JClin Invest 1992;22:504–515.Google Scholar
  56. 56.
    Walgenbach K, Gratas C, Shestak K, Becker D. Ischemia induced expression of b-FGF in normal skeletal muscle: a potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle. Nat Med 1995;1(5):453–459.PubMedCrossRefGoogle Scholar
  57. 57.
    Kuwabara K, Ogawa S, Matsumoto M, Clauss M, Pinsky D, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, Firie M, Torcia G, Cozzolino F, Kamada T, Stern D. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA1995;92:4606–4610.PubMedCrossRefGoogle Scholar
  58. 58.
    Patrick C, McIntire L. Shear stress and cyclic strain modulation of gene expression in vascular endothelial cells. Blood Purif 1995;13:112–124.PubMedGoogle Scholar
  59. 59.
    Sampath R, Kukielka G, Smith C, Eskin S, McIntire L. Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endotheliel cells in vitro. Ann Biomed Eng 1995;23:247–256.PubMedCrossRefGoogle Scholar
  60. 60.
    Unger E, Banai S, Shou M, Lazarous D, Jaklitsch M, Scheinowitz M, Correa R, Klingbeil C, Epstein S. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994;266:H1588–H1595.PubMedGoogle Scholar
  61. 61.
    Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF. Comparative effects of basic Fibroblast Growth Factor and Vascular Endothelial Growth Factor on coronary collateral development and the arterial response to injury. Circulation 1996;94:1074–1082.PubMedGoogle Scholar
  62. 62.
    Yanagisawa-Miwa K, Uschida Y, Nakamura F, T T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsumaya M, Kurashima C, Ito H. Salvage of infarcted myocardium by angiogenic action of basic Fibroblastic Growth Factor. Science 1992;257:1401–1403.PubMedCrossRefGoogle Scholar
  63. 63.
    Horrigan M, MacIsaac A, Nicolini F, Vince D, Lee P, Ellis S, Topol E. Reduction in myocardial infarct size by basic-FGF after temporary cornary occluision in a canine model. Circulation 1996;94:1927–1933.PubMedGoogle Scholar
  64. 64.
    Nakamura T, Nishizawa T, Hagiya M, Scki T, Shimonishi A, Sugimura A, Tshiro K, Schimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989;342:440–443.PubMedCrossRefGoogle Scholar
  65. 65.
    Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 1997;95:2552–2558.PubMedGoogle Scholar
  66. 66.
    Bussolino F, Direnzo M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L. Hepatocyte growth factor is a potent angiogenic which stimulates endothelial cell mobility and growth. J Cell Biol 1992;119:629–641.PubMedCrossRefGoogle Scholar
  67. 67.
    Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner J. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998;97(4):381–390.Google Scholar
  68. 68.
    Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997;277:48–50.PubMedCrossRefGoogle Scholar
  69. 69.
    Folkman J, D’Armore P. Blood vessel formation: what is its molecular basis? Cell 1996;87:1153–1155.PubMedCrossRefGoogle Scholar
  70. 70.
    Risau W. Mechanisms of angiogenesis. Nature 1997;386:671–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohno M, Lopez F, Gibbons G, Cooke J, Dzau V. Shear stress induced TGF-b1 gene expression and generation of active TGF-b1 is mediated via a K channel. Circulation 1992;86(supplI):1–87.Google Scholar
  72. 72.
    Hirschi K, D’Armore P. Pericytes in the microvasculature. Cardiov. Res 1996;32:687–698.CrossRefGoogle Scholar
  73. 73.
    Baird A, Durkin T. Inhibition of endothelial cell proliferation by type B-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun 1986;138:476–482.PubMedCrossRefGoogle Scholar
  74. 74.
    Roberts A, Sporn M, Assoian R, Smith J, Roche N, Wakefield L, Heine U, Liotta L, Falanga V, Kehrl J, Fauci A. Transforming growth factor type-beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA1986;83:4167–4171.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Cedric J. Gaultier
    • 1
  • Jean-Baptiste Michel
    • 1
  1. 1.Faculté de médecine XInserm u 460 Remodelage cardiovasculaireBichat ParisFrance

Personalised recommendations