Endothelial Function and Dysfunction

  • Paul Vanhoutte
  • Chantal Boulanger
Part of the Basic Science for the Cardiologist book series (BASC, volume 1)


The endothelial cells line the luminal surface of all blood vessels and ate involved in numerous regulatory functions, such as the control of contraction and proliferation of vascular smooth muscle, adhesion of leucocytes and platelets, permeability and inflammatory responses. The endothelium also possesses thrombolytic and fibrinolytic properties. In addition, its metabolic activity regulates the oxidation of plasma lipids, the formation of angiotensin II and the degradation of circulating catecholamines and kinins. In 1980, Furchgott and Zawadzki [1] demonstrated that endothelial cells generate vasoactive subtances. This seminal observation has become crucial to vascular biology, leading ultimately to the understanding of the physiological role for nitric oxide.


Nitric Oxide Vascular Smooth Muscle Cell Porcine Coronary Artery Canine Coronary Artery Parathyroid Hormone Related Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 299:373–376.CrossRefGoogle Scholar
  2. 2.
    Luscher TF, Vanhoutte PM: The Endothelium: Modulator of Cardiovascular Function. Boca Ranton, CRC Press, 1990; pp 1–230.Google Scholar
  3. 3.
    Miller VM, Vanhoutte PM. Endothelium-dependent responses in isolated blood vessels of lower vertebrates. Bloodvessels 1986; 23: 225–235.Google Scholar
  4. 4.
    Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol 1986; 250: H822–H827.PubMedGoogle Scholar
  5. 5.
    Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anions is involved in the breakdown of endothelium-derived relaxing factor. Nature 1986: 320: 454–456.PubMedCrossRefGoogle Scholar
  6. 6.
    Furchgott RF: Studies on the relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide; in Vanhoutte PM (Ed): Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, Raven Press, New York 1988, pp 401–414.Google Scholar
  7. 7.
    Ignarro LJ, Byrns RE, Wood KS: Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical; in Vanhoutte PM (Ed): Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, Raven Press, New York, 1988; pp427–436.Google Scholar
  8. 8.
    Palmer RMJ, Ferridge AG, Moneada S: Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer RM, Ashton DS, Moneada S: Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.PubMedCrossRefGoogle Scholar
  10. 10.
    Moneada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109–142.Google Scholar
  11. 11.
    Rees DD, Palmer RMJ, Schulz R, et al.: Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746–751.PubMedGoogle Scholar
  12. 12.
    Rees DD, Palmer RMJ, Moneada S: Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci 1989; 86: 3375–3382.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang PL, Huang Z, Mashimo H, Block KD, Moskowitz MA, Bevan JA, Fishman MC: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239–242.PubMedCrossRefGoogle Scholar
  14. 14.
    Pollock JS, Förstermann U, Mitchell JA, Warner TD, Schmitt HHH, Nahane M, Murad F: Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 1991; 88: 10480–10484.PubMedCrossRefGoogle Scholar
  15. 15.
    Lamas S, Marsden PA, Li GK, Tempst P, Michel T: Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc. Natl. Acad. Sci. USA. 1992; 89: 20496–20501.CrossRefGoogle Scholar
  16. 16.
    Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ: Molecular cloning and characterization of the constitutive bovine aortic endothelial cell synthase. J Clin Invest 1992; 90: 2092–2096.PubMedGoogle Scholar
  17. 17.
    Marsden PA, Heng HHQ, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem. 1993; 268: 17478–17488.PubMedGoogle Scholar
  18. 18.
    Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997; 272(30):18522–18525.PubMedCrossRefGoogle Scholar
  19. 19.
    Schmidt K, Werner ER, Mayer B, Wachter H, Kukovetz WR: Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells. Biochem J. 1992; 281: 297–300.PubMedGoogle Scholar
  20. 20.
    Busse R, Mulsch A, Fleming I, Hecker M: Mechanisms of nitric oxide release from the vascular endothelium. Circulation 1993; 87: V18–V25.Google Scholar
  21. 21.
    Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R: Intracellular pH and Tyrosine phosphorylation but not calcium determine shear-stress-induced nitric oxide production in native endothelial cells. Circ Res 1996; 78: 750–758.PubMedGoogle Scholar
  22. 22.
    Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol 1992; 65: 287–346.PubMedGoogle Scholar
  23. 23.
    Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline in L-arginine. Proc Natl Acad Sci USA, 1990; 87: 8612–8616.PubMedCrossRefGoogle Scholar
  24. 24.
    Vallance, P., Leone, A., Calver, A., et al.: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572.PubMedCrossRefGoogle Scholar
  25. 25.
    . Boger RH, Bode-Boger SM, Brandes RP, Phivthong-ngam L, Bohme M, Nafe R, Mugge A, Frolich JC. Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 1997; 96(4):1282–1290PubMedGoogle Scholar
  26. 26.
    Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269(6 Pt 1):C1371–C1378.PubMedGoogle Scholar
  27. 27.
    Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997; 100(12):3131–3139PubMedGoogle Scholar
  28. 28.
    Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, Pober JS. Regulation od nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. J Clin Invest 1994; 93: 2236–2243.PubMedGoogle Scholar
  29. 29.
    Liao JK, Shin WS, Lee WY, Clark SL: Oxidized low-density lipoproteins decrease the expression of endothelial nitric oxide synthase. J. Biol. Chem. 1995; 270:319–324.PubMedCrossRefGoogle Scholar
  30. 30.
    Garcia-Cardena G, Oh P, Liu JW, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmytoylation: implication for nitric oxide signalling. Proc Natl Acad Sci USA. 1996; 93: 6448–6453.PubMedCrossRefGoogle Scholar
  31. 31.
    Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990; 345(6273):346–347PubMedCrossRefGoogle Scholar
  32. 32.
    Stoclet JC, Andriantsitohaina R, Kleschyov A, Muller B. Nitric oxide and cGMP in regulation of arterial tone. Trends in Cardiov Med 1998; 8: 14–19.CrossRefGoogle Scholar
  33. 33.
    Rapoport RM, Murad F: Agonist-induced endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP. Circ. Res. 1983; 52:352–357.PubMedGoogle Scholar
  34. 34.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994, 368: 850–853.PubMedCrossRefGoogle Scholar
  35. 35.
    Boulanger C, Lüscher TF: Release of endothelin from the porcine aorta. Inhibition of endothelium-derived nitric oxide. J Clin Invest 1990; 85: 587–590.PubMedGoogle Scholar
  36. 36.
    Jia L, Bonaventura C, Bonaventura J, Stamler JS: S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380:221–226.PubMedCrossRefGoogle Scholar
  37. 37.
    Scott-Burden T, Vanhoutte PM: The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 1993; 87: V-51–V-55.Google Scholar
  38. 38.
    Garg UC, Hassid A: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1780.PubMedGoogle Scholar
  39. 39.
    Scott-Burden, T., Schini, V.B., Elizondo, E, Junquero, D.C., Vanhoutte, P.M. Platelet-derived growth factor suppresses and fibroblast growth factor enhances cytokine-induced production of nitric oxide by cultured smooth muscle cells: effect on proliferation. Circ Res 1992; 71: 1088–1100.PubMedGoogle Scholar
  40. 40.
    Hassid, A., Arabshahi, H., Bourcier, T., Dhausi, G.S., Matthews, C. Nitric oxide selectively amplifies FGF-2-induced mitogenesis in primary aortic smooth muscle cells. Am. J. Physiol. 1994; 267: H1040–H1048.PubMedGoogle Scholar
  41. 41.
    Kourembanas S, McQuillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 1993; 92(l):99–104.PubMedGoogle Scholar
  42. 42.
    Radomski, M. W., Palmer, R. M., Moncada, S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92:639.PubMedGoogle Scholar
  43. 43.
    Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997; 96(3):934–940.PubMedGoogle Scholar
  44. 44.
    Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995; 76(6):980–986.PubMedGoogle Scholar
  45. 45.
    Spiecker M, Peng HB, Liao JK Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IkappaBalpha. J Biol Chem 1997; 272(49):30969–30974.PubMedCrossRefGoogle Scholar
  46. 46.
    Yates MT, Lambert LE, Whitten JP, Mc Donald I, Mano M, Ku G, Mao JT. A protective role for nitric oxide in the oxidative modification of low-density lipoproteins by mouse macrophages. Febs Lett 1992; 309: 135–138.PubMedCrossRefGoogle Scholar
  47. 47.
    Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low density lipoprotein oxidation by nitric oxide: potential role for atherogenesis. Febs Lett, 1993; 334:170–174.PubMedCrossRefGoogle Scholar
  48. 48.
    Mombouli JV, Vanhoutte PM. Endothelium-derived hyperpolarizing factor(s): updating the unknown. TiPS 1997; 18:251–256.Google Scholar
  49. 49.
    Moneada S, Vane VR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1979; 30:293–331.Google Scholar
  50. 50.
    Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest. 1995; 96:2676–2682.PubMedCrossRefGoogle Scholar
  51. 51.
    Christodoulides N, Durante W, Kroll MH, Schafer AI. Vascular smooth muscle cell heme oxygenase generate guanylyl cyclase-stimulatory carbon monoxide. Circ 1995; 91:2306–2309.Google Scholar
  52. 52.
    Wang R, Wang Z, Wu L. Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 1997; 121:927–934.PubMedCrossRefGoogle Scholar
  53. 53.
    Wright RS, Wei CM, Kim CH, Kinoshita M, Matsuda Y, Aarhus LL, Burnett JC Jr, Miller VM. C-type natriuetic peptide-mediated coronary vasodilation: role of the coronary nitric oxide and particulate guanylate cylcase systems. J Am Coll Cardiol 1996; 28: 1031–1038.PubMedCrossRefGoogle Scholar
  54. 54.
    Komatsu Y, Itoh H, Suga S, Ogawa Y, Hama N, Kishimoto I, Nakagawa O, Igaki T, Doi K, Yoshimasa T, Nakao K; Regulation of endothelial production of C-type natriuretic peptide in coculture with vascular smooth muscle cells. Circ Res 1996; 78: 606–614.PubMedGoogle Scholar
  55. 55.
    Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broadus AE, Stewart AF. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 1996; 76: 127–173.PubMedGoogle Scholar
  56. 56.
    Rubanyi GM, Romero C, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145–H1149.PubMedGoogle Scholar
  57. 57.
    Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increase in flow in vivo. Hypertension 1986, 8: 37–44.PubMedGoogle Scholar
  58. 58.
    Mombouli JV, Vanhoutte PM. Kinins and endothelium-dependent relaxations to converting enzyme inhibitors in perfused canine arteries. J Cardiovasc Pharmacol 1991;18(6):926–927.PubMedCrossRefGoogle Scholar
  59. 59.
    Groves P, Kurz S, Just H, Drexïer H. Role of endogenous bradykinin in human coronary vasomotor control. Circulation 1995;92(12):3424–3430.PubMedGoogle Scholar
  60. 60.
    Hutcheson IR, Griffith TM. Mechanotransduction through the endothelial cytoskeleton: mediation of flow-but not agonists-induced EDRF release. Br J Pharmacol. 1996; 118:720–726.PubMedGoogle Scholar
  61. 61.
    Muller JM., Chillian WM, Davis MJ. Integrin signalling transduces shear stress-dependent vasodilation of coronary arterioles. Circ Res 1997; 80: 320–326.PubMedGoogle Scholar
  62. 62.
    Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995; 75: 519–560.PubMedGoogle Scholar
  63. 63.
    Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vase Biol 1996; 16(10):1256–1262.Google Scholar
  64. 64.
    Miller VM, Vanhoutte PM. Endothelial alpha2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol. 1985; 118: H432–H437.CrossRefGoogle Scholar
  65. 65.
    Bryan RM Jr, Steenberg ML, Eichler MY, Johnson TD, Swafford MW, Suresh MS. Permissive role of NO in alpha 2-adrenoceptor-mediated dilations in rat cerebral arteries. Am J Physiol 1995; 269(3 Pt 2):H1171–H1174.PubMedGoogle Scholar
  66. 66.
    Katusic ZS, Sheperd JT, Vanhoutte PM. Vasopressin causes endothelium-dependent relaxations in canine basilar arteries. Circ Res 1984; 55: 575–579.PubMedGoogle Scholar
  67. 67.
    Toda N. Mechanism of histamine actions in human coronary arteries. Circ Res 1987; 61: 280–286.PubMedGoogle Scholar
  68. 68.
    Berkenboom G, Depierreux M, Fontaine J. The influence of atherosclerosis on the mechanical responses of human isolated coronary arteries, to substance P, isoprenaline and noradrenaline. Br J Pharmacol 1987;92(l):113–120.PubMedGoogle Scholar
  69. 69.
    Nakashima N, Mombouli JV, Taylor AA, Vanhoutte PM. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J. Clin. Invest 1993; 92: 2867–2871.PubMedGoogle Scholar
  70. 70.
    Mombouli JV, Vanhoutte PM. Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 1995;35:679–705.PubMedCrossRefGoogle Scholar
  71. 71.
    Hornig B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angitoensin-converting enzyme inhibitors in humans. Circulation 1997; 95: 1115–1118.PubMedGoogle Scholar
  72. 72.
    Cohen RA, Sheperd JT, Vanhoutte PM. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 1983; 221:273–274.PubMedCrossRefGoogle Scholar
  73. 73.
    Vanhoutte PM, Boulanger CM. Endothelium-dependent response in hypertension. Hypert Res 1995; 18: 87–98.Google Scholar
  74. 74.
    Miller VM, Vanhoutte PM. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase in canine veins. Am J Physiol 1985; 248: H432–H437.PubMedGoogle Scholar
  75. 75.
    Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM. Augmented expression of prostaglandin H synthase and contraction to prostaglandin H2 in the aorta of spontaneously hypertensive rats. Circulation Research 1995; 76:1003–1010.PubMedGoogle Scholar
  76. 76.
    Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of Superoxide by purified brain nitric oxide synthase. J Biol Chem 1992; 267:24173–24176.PubMedGoogle Scholar
  77. 77.
    Heinzel B, John M, Klatt P, Bohme E, Mayer B: Ca2+ calmodulin dependent formation of hydrogen peroxide by brain nitric oxide synthase. J. Biol. Chem 1992; 281:627–630.Google Scholar
  78. 78.
    Graser T, Vanhoutte PM. Hypoxic contraction of canine coronary arteries: role of endothelium and cGMP. Am J Physiol 1991; 261(6 Pt 2):H1769–H1777.PubMedGoogle Scholar
  79. 79.
    Pearson PJ, Lin PJ, Schaff HV, Vanhoutte PM Augmented endothelium-dependent constriction to hypoxia early and late following reperfusion of the canine coronary artery. Clin Exp Pharmacol Physiol 1996;23(8):634–641.PubMedCrossRefGoogle Scholar
  80. 80.
    Yanagisawa, M., Kurihara, H., Kimura, S., et al.: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411.PubMedCrossRefGoogle Scholar
  81. 81.
    Ohnaka K, Takayanagi R, Nishikawa M, et al.: Purification and characterization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium. J Biol Chem 1993; 268: 26759.PubMedGoogle Scholar
  82. 82.
    Xu D, Emoto N, Giaid A, et al.: ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 1994; 78: 473.PubMedCrossRefGoogle Scholar
  83. 83.
    Arai, H., Hori, S., Aramori, I., et al.: Cloning and expression of a cDN A encoding an endothelin receptor. Nature 1990; 348: 730.PubMedCrossRefGoogle Scholar
  84. 84.
    Sakurai, T., Yanagisawa, M., Takuwa, Y., et al.: Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990; 348: 732.PubMedCrossRefGoogle Scholar
  85. 85.
    Seo, B., Oemar, B. S., Siebenmann, R., et al.. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 1994; 89:1203.PubMedGoogle Scholar
  86. 86.
    Wagner, O. F., Christ, G., Wojta, J., et al.: Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 1992; 267:16066.PubMedGoogle Scholar
  87. 87.
    Stewart, D. J., Langleben, D., Cernacek, P., et al.: Endothelin release is inhibited by coculture of endothelial cells with cells of vascular media. Am J Physiol 1990; 259: H1928.PubMedGoogle Scholar
  88. 88.
    Flavahan NA, Shimokawa H, Vanhoutte PM. Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries. J. Physiol. 1989; 408: 549–560.PubMedGoogle Scholar
  89. 89.
    Shimokawa H, Flavahan NA, Vanhoutte PM. Natural course of the impairment of endothelium-dependent relaxations in regenerating porcine endothelial cells: role of a pertussis toxin sensitive G-protein. Circ Res 1989; 65; 740–753.PubMedGoogle Scholar
  90. 90.
    Shimokawa H, Flavahan NA, Shepherd JT, Vanhoutte PM. Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in porcine coronary arteries with regenerated endothelium. Circulation 1989; 80:643–650.PubMedGoogle Scholar
  91. 91.
    Borg-Capra C, Fournet-Bourguignon MP, Janiak P, Villeneuve N, Bidouard JP, Vilaine JP, Vanhoutte PM. Morphological heterogeneity with normal expression but altered function of G proteins in porcine cultured regenerated coronary endothelial cells. Br JPharmacol 1997; 122(6):999–1008.CrossRefGoogle Scholar
  92. 92.
    Tsutsui M, Shimokawa H, Tanaka S, Kuwoaka I, Hase K, Nogami N, Nakanishi K, Okamatsu S: Endothelial Gi protein in human coronary arteries. Eur. Heart J 1994; 15: 1261–1266.PubMedGoogle Scholar
  93. 93.
    Shimokawa H, Tsutsui M, Mizuki T, Hase K, Kuwaoka I, Nogami N, Okamatsu S, Nakanishi K: Endothelial Gi protein expression is markedly low in human coronary microvessels. J Cardiov. Pharmacol 1996; 27:297–302.CrossRefGoogle Scholar
  94. 94.
    Pearson PJ, Schaff HV, Vanhoutte PM. Acute impairment of endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries. Circ Res 1990; 67(2):385–393PubMedGoogle Scholar
  95. 95.
    Lee JJ, Olmos L, Vanhoutte PM. Recovery of endothelium-dependent relaxations four weeks after ischemia and progressive reperfusion in canine coronary arteries. Proc Assoc Am Physicians 1996;108(5):362–367.PubMedGoogle Scholar
  96. 96.
    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315(17):1046–1051.PubMedCrossRefGoogle Scholar
  97. 97.
    Golino, P, Piscione F, Willerson JT, Cappelli BM, Focaccio A, Villari B, Indolfi C, Russilillo E, Condorelli M, Chiarello M. Divergent effects of serotonin on coronary artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med 1991; 324: 641–648.PubMedCrossRefGoogle Scholar
  98. 98.
    Shimokawa H, Vanhoutte PM: Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 1989; 64:900–914.PubMedGoogle Scholar
  99. 99.
    Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vase Biol 1997; 17(11):2479–2488.Google Scholar
  100. 100.
    Minor RL Jr, Myers PR, Guerra R Jr, Bates JN, Harrison DG Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 1990; 86(6):2109–2116.PubMedGoogle Scholar
  101. 101.
    Wever RM, Luscher TF, Cosentino F, Rabelink TJ Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998;97(1):108–112.PubMedGoogle Scholar
  102. 102.
    Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 1997; 99(l):41–46.PubMedGoogle Scholar
  103. 103.
    Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Craeger MA. Vitamin C improves endothelium dependent vasodilation in forearm resistance vessels of human with hypercholesterolemia. Circulation, 1997; 95:2617–2622.PubMedGoogle Scholar
  104. 104.
    Lerman A, Edwards BS, Hallett JW et al.: Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. New Engl J Med 1991; 325: 997–999.PubMedCrossRefGoogle Scholar
  105. 105.
    Hasdai D, Best PJ, Cannan CR, Mathew V, Schwartz RS, Holmes DR Jr, Lerman A. Acute endothelin-receptor inhibition does not attenuate acetylcholine-induced coronary vasoconstriction in experimental hypercholesterolemia. Arterioscler Thromb Vase Biol 1998; 18(1):108–113.Google Scholar
  106. 106.
    Linder L, Kiowski W, Buhler FR, Luscher TF. Indirect evidence for release of endothelium derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 1990 Jun;81(6):1762–1767.Google Scholar
  107. 107.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl JMed 1990 5;323(l):22–27.CrossRefGoogle Scholar
  108. 108.
    Creager MA, Roddy MA. Effect of captopril and enalapril on endothelial function in hypertensive patients. Hypertension 1994 Oct;24(4):499–505.Google Scholar
  109. 109.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 1997; 29(1 Pt 2):274–279.PubMedGoogle Scholar
  110. 110.
    Cockcroft JR, Chowienczyk PJ, Benjamin N, Ritter JMPreserved endothelium-dependent vasodilatation in patients with essential hypertension. N Engl J Med 1994; 330(15):1036–1040.PubMedCrossRefGoogle Scholar
  111. 111.
    Lüscher TF., Raij L. and Vanhoutte P.M. Endothelium-dependent vascular responses in normotensive and hypertensive Dahl-rats. Hypertension 1987; 9: 157–163.PubMedGoogle Scholar
  112. 112.
    Hayakawa H, Raij L. Nitric oxide synthase activity and renal injury in genetic hypertension. Hypertension 1998 Jan;31(1 Pt 2):266–270.Google Scholar
  113. 113.
    Matsuoka H, Itoh S, Kimoto M, Kohno K, Tamai O, Wada Y, Yasukawa H, Iwami G, Okuda S, Imaizumi T. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 1997; 29(1 Pt 2):242–247.PubMedGoogle Scholar
  114. 114.
    Patel A, Layne S, Watts D, Kirchner KA. L-arginine administration normalizes pressure natriuresis in hypertensive Dahl rats. Hypertension 1993; 22(6):863–869.PubMedGoogle Scholar
  115. 115.
    Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Type I Nitric oxide synthase is expressed in vascular smooth muscle cells: activation by angiotensin II in hypertension. The Physiologist, 1998; 41,4: 271.Google Scholar
  116. 116.
    Tschudi MR, Mesaros S, Luscher TF, Malinski T. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by Superoxide in hypertension. Hypertension 1996; 27(1):32–35.PubMedGoogle Scholar
  117. 117.
    Cannan CR, McGoon MD, Holmes DR Jr, Lerman A. Altered coronary endothelial function in a patient with asymptomatic left ventricular dysfunction. Int J Cardiol 1996; 53(2):147–151.PubMedCrossRefGoogle Scholar
  118. 118.
    Lerman A, Kubo SH, Tschumperlin LK, Burnett JC Jr. Plasma endothelin concentrations in humans with end-stage heart failure and after heart transplantation. J Am Coll Cardiol 1992; 20(4):849–853.PubMedCrossRefGoogle Scholar
  119. 119.
    Mulder P, Richard V, Derumeaux G, Hogie M, Henry JP, Lallemand F, Compagnon P, Mace B, Comoy E, Letac B, Thuillez C. Role of endogenous endothelin in chronic heart failure: effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 1997; 96(6):1976–1982.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Paul Vanhoutte
    • 1
  • Chantal Boulanger
    • 2
  1. 1.IRISCourbevoieFrance
  2. 2.Lariboisière hospitalINSERM Unit 141ParisFrance

Personalised recommendations