Advertisement

Neurohumoral Control of the Vascular System

  • Stéphane Laurent
Part of the Basic Science for the Cardiologist book series (BASC, volume 1)

Abstract

Through the modification of the neuronal discharge or changes in circulating catecholamines, the autonomic nervous system induces central or local vasomotor alterations and participates in the control of the internal environment and homeostasis. The vascular smooth muscle is the effector organ for these alterations. Indeed, with the exception of capillaries and some venules, the vessels have the ability to alter their calibre, to influence the regional (or total) peripheral resistance and capacitance, and to influence the cardiac output and its distribution. Several studies have demonstrated the extreme diversity of responses of different blood vessels to alteration in autonomic control [1].

Keywords

Brachial Artery Vasoactive Intestinal Peptide Blood Flow Velocity Large Artery Blood Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bevan JA, Bevan RD. « Changes in arteries as they get smaller. » In Vasodilatation: Vascular smooth muscle, peptides, autonomic nerves and endothelium PM Vanhoutte ed. New York: Raven Press Ltd, 1988.Google Scholar
  2. 2.
    Bevan JA. Pressure and flow: are these the true vascular neuroeffectors? Blood Vessels 1991;28(1–3):164–172PubMedGoogle Scholar
  3. 3.
    Burnstock G. Nervous control of smooth muscle by transmitters, cotransmitters and modulators. Experientia Basel. 1985;41:869–74.CrossRefGoogle Scholar
  4. 4.
    Shepherd JT, Vanhoutte PM. The human cardiovascular system. Facts and concepts. New York, Raven Press, 1979.Google Scholar
  5. 5.
    Chalmers J, Arnolda L, Llewellyn-Smith I, Minson J, Pilowsky P. “Central control of blood pressure”. In Textbook of Hypertension, JD Swales, ed., Blackwell Scientific Publications, 1994.Google Scholar
  6. 6.
    Chalmers J, Pilowsky P. Brainstem and bulbospinal neurotransmitter system in the control of blood pressure. J Hypertens 1991;9:675–694.PubMedCrossRefGoogle Scholar
  7. 7.
    Angus JA, Brougton A, Mulvany MJ. Role of alpha-adrenoceptors in constrictor responses of rat, guinea-pig and rabbit small arteries to neural activation. J Physiol Lond 1988;403:495–510.PubMedGoogle Scholar
  8. 8.
    Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev 1990;70:921–61.PubMedGoogle Scholar
  9. 9.
    Lundberg JM. Pharmacology of co-transmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, aminoacids, and nitric oxide. Pharmacol Rev 1996;48:113–178.PubMedGoogle Scholar
  10. 10.
    Gavazzi I, Boyle KS, Cowen T. Extracellular matrix molecules influence innervation density in rat cerebral blood vessels. Brain Res 1996;23:167–174.CrossRefGoogle Scholar
  11. 11.
    Lacolley P, Lewis S, Brody MJ. Role of sympathetic nerve activity in the generation of vascular nitric oxide in urethane anesthetised rats. Hypertension 1991;17:881–887.PubMedGoogle Scholar
  12. 12.
    Gow BS. Circulatory correlates: vascular impedance, resistance, and capacitance. In DF Bohr et al (Eds.), The cardiovascular system, Vol II. Vascular smooth muscle (pp. 353–408). Baltimore: American Physiological Society (The Williams & Wilkins Company), 1980.Google Scholar
  13. 13.
    Furchgott RF, Zawadzki JV, Cherry PD. Role of endothelium in the vasodilator response to acetylcholine. In PM Vanhoutte and I Leusen (Eds.), Vasodilation (pp. 49–66). New York, Raven Press Publishers, 1981.Google Scholar
  14. 14.
    Pohl U, Holtz J, Buss R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986; 8: 37–44.PubMedGoogle Scholar
  15. 15.
    Barnett GO, Mallos AJ, Shapiro A. Relationship of aortic pressure and diameter in the dog. J Appl Physiol 1961; 16: 545–8.PubMedGoogle Scholar
  16. 16.
    Pagani M, Mirsky L, Baig H, Manders WY, Kerkhof P, Vatner SF. Effects of age on aortic pressure-diameter and elastic stiffness stress relationships in unanesthetized sheep. Circ Res 1979;44:420–9.PubMedGoogle Scholar
  17. 17.
    Hughes AD, Thom SAM, Martin GN. Size and site-dependent heterogeneity of human vascular responses in vitro. J. Hypertens, 1988;6(Suppl. 4): S173–5.Google Scholar
  18. 18.
    Aars H. Diameter and elasticity of the ascending aorta during infusion of noradrenaline. Acta Physiol Scand 1971;83:133–138.Google Scholar
  19. 19.
    Cox RH. Effects of norepinephrine on mechanics of arteries in vivo. Am J Physiol 1976; 2315: 420–425.Google Scholar
  20. 20.
    Laher I, Bevan JA. Alpha-adrenoreceptor number limits response of some rabbit arteries to norepinephrine. J Pharmacol Exp Ther 1985;233: 290–297.PubMedGoogle Scholar
  21. 21.
    Owen MP, Quinti CA, Bevan JA. Phentolamine-resistant neurogenic constriction occurs in small arteries at higher frequencies. Am J Physiol 1985; 249(Heart Circ. Physiol., 18): H404–14.PubMedGoogle Scholar
  22. 22.
    McDonald DA. Bloodflow in arteries. London: Edward Arnold, 1974.Google Scholar
  23. 23.
    Peterson LH, Jensen RE, Pamell R. Mechanical properties of arteries in vivo. Circ Res, 1960; 8:622–39.Google Scholar
  24. 24.
    Bagshaw RJ, Peterson LH. Sympathetic control of the mechanical properties of the canine carotid sinus. Am J Physiol 1972; 222: 1462–8.PubMedGoogle Scholar
  25. 25.
    Dobrin PB, Rovick AA. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 1969; 217: 1644–51.PubMedGoogle Scholar
  26. 26.
    Gow BS. The influence of vascular smooth muscle on the visco-elastic properties of blood vessels. In Cardiovascular fluid dynamics, DH Bergel, ed. New York, Academic Press, 1972.Google Scholar
  27. 27.
    Boutouyrie P, Lacolley P, Girerd X., Beck L., Safar M., Laurent S. Sympathetic activation decreases radial artery compliance in humans. Am J Physiol 1994;267:H1368–76.PubMedGoogle Scholar
  28. 28.
    Joannides R, Richard V, Moore N, Godin M, Thuillez C. Influence of sympathetic tone on mechanical properties of muscular arteries in humans. Am J Physiol 1995 Feb;268(2 Pt2):H794–H801.Google Scholar
  29. 29.
    Prichard BNC, Weber MA. “Antiadrenergic drugs. Principles and practice of a-antiadrenergic therapy”. In Cardiovascular Drug Therapy, Franz Messerli ed. Philadelphia, Saunders Publishing 1996.Google Scholar
  30. 30.
    Timmermans PMBWM, Van Zwieten PA. “Alpha-adrenoreceptors antagonists”. In Pharmacology of antihypertensive drugs. Handbook of hypertension. Peter A VanZwieten, ed., Amsterdam, Elsevier Science Publishers, 1984.Google Scholar
  31. 31.
    Frishman WH, Hershman D. “Beta-adrenoreceptor blockers. Principles and practice of beta-adrenoreceptor blockade.”. In Cardiovascular Drug Therapy, Franz Messerli ed. Philadelphia, Saunders Publishing 1996.Google Scholar
  32. 32.
    Kiowski W, Hulthen UL, Ritz R, Buhler FR. Alpha 2-adrenoreceptor mediated vasoconstriction in human arterial vessels. Clin Pharmacol Ther 1983; 34: 565–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Jie K, Van Brummelen P, Vermey P, Timmermans PBMWM, Van Zwieten PA Effects of exogenous adrenaline and noradrenaline on vascular post-synaptic alpha1 and alpha2 adrenoreceptors in man. J Hypertens 1984, 2(Suppl 3): 119–21.Google Scholar
  34. 34.
    Safar M, Peronneau J, Levenson J, Simon A. Pulsed Doppler: diameter velocity and flow of brachial artery in sustained essential hypertension. Circulation 1981; 63: 393–400.PubMedGoogle Scholar
  35. 35.
    Laurent S, Juillerat L, London GM, Nussberger J, Brunner H, Safar ME. Increased response of brachial artery diameter to norepinephrine in hypertensive patients. Am J Physiol 1988; 255: H36–43.PubMedGoogle Scholar
  36. 36.
    Laurent S, Iacolley P, Brunel P, Safar M. Effects of short lasting mental stress on systemic and brachial haemodynamics in essential hypertension. Circulation 1988; 78(Suppl. IV): IV–175.Google Scholar
  37. 37.
    Safar ME, Daou JE, Safavian A, London GM. Comparison of forearm plethysmographic methods with brachial artery Doppler flowmetry in man. Clin Physiol 1988; 8:163–70.PubMedGoogle Scholar
  38. 38.
    Anderson EA, Sinkey CA, Mark AL. Mental stress increases sympathetic nerve activity during sustained baroreceptor stimulation in humans. Hypertension 1991 Apr;17(4 Suppl):III43–III49Google Scholar
  39. 39.
    Stauss HM, Anderson EA, Haynes WG, Kregel KC. Frequency response characteristics of sympathetically mediated vasomotor waves in humans. Am J Physiol. 1998 Apr; 274(4 Pt 2): H1277–H1283.Google Scholar
  40. 40.
    Shepherd JT, Abboud FM. Peripheral circulation and organ blood flow. The Cardiovascular System.. Handbook of Physiology. Bethesda, Maryland, 1983.Google Scholar
  41. 41.
    Man’in’t Veld AJ, Shalekamp MADH. Effects of 10 different beta-adrenoreceptors antagonists in hemodynamics, plasma renin activity and plasma norepinephrine in hypertension. The key role of vascular resistance changes in relation to partial agonist activity. J Cardiovasc Pharmacol 5(suppl 1): S30–S36, 1983.CrossRefGoogle Scholar
  42. 42.
    Gerova M, Gero J, Dolezel S, Blazkova-Huzulakova I. Sympathetic control of canine abdominal aorta. Circ Res 1973;33:149–152.PubMedGoogle Scholar
  43. 43.
    Aars H. Effects of altered smooth muscle tone on aortic diameter and aortic baroreceptor activity in anesthetised rabbits. Circ Res 1971;28:254–62.PubMedGoogle Scholar
  44. 44.
    Cox RH. Mechanics of canine iliac artery smooth muscle in vitro. Am J Physiol 1976;230:462–70.PubMedGoogle Scholar
  45. 45.
    Laurent S, Lacolley P, Brunel P, Laloux B, Pannier B, Safar M. Flow-dependent vasodilation of the brachial artery in essential hypertension. Am J Physiol 1990, 258(Heart Circ. Physiol. 27): H1004–H1011.PubMedGoogle Scholar
  46. 46.
    London GM, Pannier BP, Laurent S, Safar ME. Cardiopulmonary baroreflex control of brachial artery diameter in sustained essential hypertension. J Hypertens 1989; 7 879–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Anderson EA, Mark AL. Flow-mediated and reflex changes in large peripheral artery tone in humans. Circulation 1989; 79: 93–100.PubMedGoogle Scholar
  48. 48.
    Tardy Y, Meister J-J, Perret F, Brunner H, Ardity M. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas 1991:12;39–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoeks APG, Brands PJ, Smeets GAM, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990; 16: 121–128.PubMedCrossRefGoogle Scholar
  50. 50.
    Kelly R, Daley J, Avollo A, O’Rourke MF. Arterial dilation and reduced wave reflection. Benefit of dilevalol in hypertension. Hypertension 1989; 14:14–21.PubMedGoogle Scholar
  51. 51.
    Laurent S, Caviezel B, Beck L, Girerd X, Billaud E, Boutouyrie P, Hoeks A, Safar M. Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 1994;23[part 2]:878–883.PubMedGoogle Scholar
  52. 52.
    Levenson J, Simon ACh, Bouthier JD, Benetos A, Safar ME. Post-synaptic alpha-blockade and brachial artery compliance in essential hypertension. J Hypertens 1984;2: 37–41.PubMedCrossRefGoogle Scholar
  53. 53.
    London GM, Laurent S, Safar M. “The autonomic nervous system and large conduit arteries”. In Vasodilation, M O’Rourke, M Safar, V Dzau, Eds, London, Edward Arnold, 1993.Google Scholar
  54. 54.
    Madkour A, Levenson J, Bravo El„ Simon A & Fouad-Tarazi FM (1989) Preload, adrenergic activity, and aortic compliance in normal and hypertensive patients. Am. Heart. J. 1183 1243–7.CrossRefGoogle Scholar
  55. 55.
    London GM, Levenson JA, Safar ME, Simon AC, Guerin AP, Payen D. Hemodynamic effects of head-down tilt in normal subjects and sustained hypertensive patients. Am J Physiol 1983; 245:H194–H202.PubMedGoogle Scholar
  56. 56.
    Roddie IC, Shepherd JT, Whelan RF. Reflex changes in vasoconstrictor tone in human skeletal muscle in response to stimulation of receptors in low-pressure area of the intrathoracic vascular bed. J Physiol (Lond) 1957; 139: 369–76.Google Scholar
  57. 57.
    Simon ACh, Levenson JA, Bouthier JA, Safar ME. Comparison of MK 421 and propranolol in mild to moderate essential hypertension and their effects on arterial and venous vessels of the forearm. Am J Cardiol 1984; 53:781–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Levenson JA, Simon ACh, Fiessinger JN, Safar ME, London GM, Housset EM (1982) Systemic arterial compliance in patients with arteriosclerosis obliterans of the lower limbs. Observation on the effect of intravenous propranolol. Arteriosclerosis, 2, 266–71.PubMedGoogle Scholar
  59. 59.
    Maarek BL, Bouthier JA, Simon ACh, Levenson J, Safar ME. Comparative effects of propranolol and pindolol on small and large arteries and veins of the forearm circulation in hypertensive man. J Cardiovasc Pharmacol 1986; 8:(Suppl 4) S61–6.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Stéphane Laurent
    • 1
    • 2
  1. 1.Department of PharmacologyBroussais HospitalFrance
  2. 2.INSERM U337ParisFrance

Personalised recommendations