Advertisement

Androgen Metabolism and Action

  • T. R. Brown
Part of the Mineralogical Society Series book series (ENDO, volume 5)

Abstract

Androgen secretion by the testes during embryonic and neonatal life is responsible for the initial growth and differentiation of many organs of the male reproductive tract, such as the Wolffian ducts, urogenital sinus, and external genitalia primordia (Griffin and Wilson, 1998). Androgens also imprint regions of the central nervous system and determine the male pattern of gonadotropin secretion. During puberty, androgens promote the appearance of secondary male sex characteristics, including growth of the external genitalia, development of the prostate and seminal vesicles, distribution of body hair, and increase in muscle mass. These hormones initiate and maintain spermatogenesis, and they exert feedback control on the output of gonadotropins by the hypothalamic-pituitary axis. Although androgens act on the liver, kidneys, muscles, bones, and nervous and cardiovascular systems, it is within the male reproductive tract that the molecular mechanisms of androgen action are best understood.

Keywords

Androgen Receptor Androgen Receptor Gene Male Reproductive Tract Wolffian Duct Androgen Receptor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarneh B, Ito J, Fisher CR, Michael MD, Mendelson CR, Bulan SE. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 1994; 15:342–355PubMedCrossRefGoogle Scholar
  2. Beato M, Sanchez-Pacheo A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr Rev 1996; 17:587–609PubMedCrossRefGoogle Scholar
  3. Brooks RV. Androgens. Clin Endocrinol Metab 1975; 4:503–520PubMedGoogle Scholar
  4. Brown TR. Androgen insensitivity syndrome. J Androl 1995; 16:299–303PubMedGoogle Scholar
  5. Bruchovsky N, Wilson JD. The conversion of testosterone to 5α-androstan-17β-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 1968; 243:2012–2021PubMedGoogle Scholar
  6. Choong CS, Kemppainen JA, Zhou Z-X, Wilson EM. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996; 10:1527–1535PubMedCrossRefGoogle Scholar
  7. Coetzee GA, Ross RK. Re: Prostate cancer and the androgen receptor. J Natl Canc Inst 1994; 86:872–873CrossRefGoogle Scholar
  8. Culig Z, Hobisch A, Cronauer MV, Cato ACB, Hittmair A, Radmayr C. Eberle J, Bartsch G, Klocker H. Mutant androgen receptor detected in an advanced stage carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7:1541–1550PubMedCrossRefGoogle Scholar
  9. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Cancer Res 1994; 54:5474–5478PubMedGoogle Scholar
  10. Davis DL, Russell DW. Unusual length polymorphism in human steroid 5α-reductase type 2 gene (SRD5A2). Hum Mol Genet 1993; 6:820CrossRefGoogle Scholar
  11. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 1981; 15:259–278Google Scholar
  12. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997: 94:3320–3323PubMedCrossRefGoogle Scholar
  13. Griffin JE, Wilson JD. “Disorders of the Testes and the Male Reproductive Tract.” In Williams Textbook of Endocrinology, JD Wilson DW Foster, HM Kronenberg, PR Larsen eds., Philadelphia. WB Saunders Co., 1998; pp. 819–875.Google Scholar
  14. Grumbach MM, Conte FA. “Disorders of Sex Differentiation.” In Williams Textbook of Endocrinology, JD Wilson DW Foster, HM Kronenberg, PR Larsen eds., Philadelphia. WB Saunders Co., 1998; pp. 1303–1425.Google Scholar
  15. Hammond GL, Bocchinfuso WP. Sex hormone-binding globulin/androgen binding protein: steroid binding and dimerization domains. J Steroid Biochem Molec Biol 1995; 53:1–6CrossRefGoogle Scholar
  16. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 1996; 10:1167–1177PubMedCrossRefGoogle Scholar
  17. Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55:1937–1940PubMedGoogle Scholar
  18. Jenster G, vander Korput HAGM, van Vroonhoven C, vander Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation and subcellular localization. Mol Endocrinol 1991; 5:1396–1404PubMedGoogle Scholar
  19. Kovisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visacorpi T, Kallioniemi O-P. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57:314–319Google Scholar
  20. Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson J-A. Comparison of the ligand binding specificity and transcript distribution of estrogen receptors a and β. Endocrinology 1997; 138:863–870PubMedCrossRefGoogle Scholar
  21. LaSpada AR, Wilson EM, Lubahn DB. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352:77–79CrossRefGoogle Scholar
  22. Lobaccaro J-M, Lumbroso S. Belon C, Galtier-Dereure F, Bringer J, Lesimple T, Namer M, Cutuli BF, Pujol H, Sultan C. Androgen receptor gene mutation in male breast cancer. Hum Mol Genet 1993; 2:1799–1802PubMedCrossRefGoogle Scholar
  23. Lookingbill DP, Demers LM, Wang C, Leung A, Rittmaster RS, Santen RJ. Clinical and biochemical parameters of androgen action in normal Caucasian versus Chinese subjects. J Clin Endocrinol Metab 1991; 72:1242–1248PubMedGoogle Scholar
  24. Lubahn DB, Joseph DR, Sar M, Tan J-A, Higgs HN, Larson DE, French FS, Wilson EM. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988; 2:1265–1275PubMedCrossRefGoogle Scholar
  25. Morimoto I, Hawks ED, Horton R. Studies on the origin of androstanediol and androstanediol glucuronide in young and elderly men. J Clin Endocrinol Metab 1981; 52:772–778PubMedCrossRefGoogle Scholar
  26. Morishima A, Grumbach MM, Simpson ER et al. Aromatase deficiency in male and female siblings caused by a novel mutation and physiological role of estrogens. J Clin Endocrinol Metab 1995; 80:3689–3698PubMedCrossRefGoogle Scholar
  27. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 1992; 89:6319–6323PubMedCrossRefGoogle Scholar
  28. Pardridge WM. Serum bioavailability of sex steroid hormones. J Clin Endocrinol Metab 1986; 15:259–278CrossRefGoogle Scholar
  29. Quigley CA, DeBellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr Rev 1995; 16:271–321PubMedCrossRefGoogle Scholar
  30. Rosner W, Hryb DJ, Khan MS, et al. Sex hormone-binding globulin. Binding to cell membranes and generation of a second messenger. J Androl 1992; 13:101–106PubMedGoogle Scholar
  31. Ross RK, Bernstein L, Lobo RA, Shimizu H, Stanczyk FZ, Pike MC, Henderson BE. 5α-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 1992; 339:887–889PubMedCrossRefGoogle Scholar
  32. Russell DW, Wilson JD. Steroid 5α-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63:25–61PubMedGoogle Scholar
  33. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER. Microsatellite mutation (CAG24—>18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994; 198:74–80PubMedCrossRefGoogle Scholar
  34. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331:1056–1061PubMedCrossRefGoogle Scholar
  35. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332:1393–1398PubMedCrossRefGoogle Scholar
  36. Trifiro MA, Kazemi-Esfarjani P, Pinsky L. X-linked muscular atrophy and the androgen receptor. Trends Endocrinol Metab 1994; 5:416–421CrossRefPubMedGoogle Scholar
  37. Veldsholte J, Ris-Staplers C, Kuiper GGJM, Jenster G, Berrevoets C, Classen E, van Rooij HCJ, Trapman J, Brinkmann AO, Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173:534–540CrossRefGoogle Scholar
  38. Wilson JD, Griffin JE, Russell DW. Steroid 5α-reductase 2 deficiency. Endocr Rev 1993; 14:577–593PubMedCrossRefGoogle Scholar
  39. Wooster R, Mangion J, Eeles R, Smith S. Dowsett M, Averill D, Barrett-Lee P, Easton DF, Ponder BAJ, Stratton MR. A germline mutation in the androgen receptor gene in two brothers with breast cancer and Reifenstein syndrome. Nature Genet 1992; 2:132–134PubMedCrossRefGoogle Scholar
  40. Zhou Z-X, Wong C-I, Sar M, Wilson EM. The androgen receptor: an overview. Rec Prog Horm Res 1994; 49:249–274PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • T. R. Brown
    • 1
  1. 1.Johns Hopkins UniversityBaltimore

Personalised recommendations