Advertisement

Caspase cascades and caspase targets

  • Thomas Rudel
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)

Abstract

Apoptosis is an evolutionarily conserved form of cell suicide. Cells that die by apoptosis are disassembled in a stereotypical manner resulting in a characteristic ‘apoptotic morphology’. It was this characteristic, uniform morphology displayed by cells during apoptosis which led to the assumption that cells contain a similar execution machinery running according to a program present in all cells. The apoptosis-inducing stimuli are extremely diverse, engage sometimes totally different signalling pathways but are finally translated into the same response of a co-ordinated cell death. Furthermore, induction of apoptosis is sometimes very rapid, in the range of minutes to hours from receiving the signal until the first apoptotic signs appear. For such a fast event, time is too short to start the synthesis of new proteins executing the apoptotic program. Thus, all the components of the death machinery are present in a dormant form and are rapidly converted if necessary. In recent years many of the molecules involved in apoptotic death have been identified and functionally assigned to different stages of apoptosis. The final stage, also called execution, is initiated and co-ordinated by a recently identified class of cysteine proteases termed caspases.

Keywords

Death Receptor Adaptor Molecule CASPASE Cascade Initiator Caspases Death Effector Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641–652.PubMedCrossRefGoogle Scholar
  2. 2.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Et A: A novel heterodimeric cysteine protease is required for Interleukin-1-beta processing in monocytes. Nature 1992;356:768–776.PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson DW, Thornberry NA: Caspases: killer proteases. Trends in Biochemical Sciences 1997;22:299–306.PubMedCrossRefGoogle Scholar
  4. 4.
    Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD: Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/pl0)2 homodimer. Cell 1994;78:343–352.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA: Structure and mechanism of interleukin-1 beta converting enzyme. Nature 1994;370:270–275.PubMedCrossRefGoogle Scholar
  6. 6.
    Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thomberry NA, Becker JW: The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Structural Biology 1996;3:619–625.PubMedCrossRefGoogle Scholar
  7. 7.
    Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW: A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. Journal of Biological Chemistry 1997, 272:17907–17911.PubMedCrossRefGoogle Scholar
  8. 8.
    Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998;281:1305–1308PubMedCrossRefGoogle Scholar
  9. 9.
    Chou JJ, Matsuo H, Duan H, Wagner G: Solution structure of the raidd card and model for card/card interaction in caspase-2 and caspase-9 recruitment. Cell 1998;94:171–180.PubMedCrossRefGoogle Scholar
  10. 10.
    Thome M, Hofmann K, Bums K, Martinen F, Bodmer JL, Mattmann C, Tschopp J: Identification of cardiak, a rip-like kinase that associates with caspase-1. Current Biology 1998, 8:885–888.PubMedCrossRefGoogle Scholar
  11. 11.
    Duan H, Dixit VM: RAIDD is a new ‘death’ adaptor molecule. Nature 1997;385:86–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85:803–815.PubMedCrossRefGoogle Scholar
  13. 13.
    Muzio M, Chinnaiyan AM, Kischkel FC, Orourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 1996;85:817–827.PubMedCrossRefGoogle Scholar
  14. .14
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.PubMedCrossRefGoogle Scholar
  15. 15.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81. 505–512.PubMedCrossRefGoogle Scholar
  16. 16.
    Muzio M, Stockwell BR, Stennicke FIR, Salvesen GS, Dixit VM: An induced proximity model for caspase-8 activation. Journal of Biological Chemistry 1998;273. 2926–2930.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang X, Chang HY, Baltimore D: Autoproteolytic activation of pro-caspases by oligomerization. Molecular Cell 1998; 1:319–325.PubMedCrossRefGoogle Scholar
  18. 18.
    Salvesen GS, Dixit VM: Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–446PubMedCrossRefGoogle Scholar
  19. 19.
    Green DR, Reed JC: Mitochondria and apoptosis. Science 1998;281:1309–1312.PubMedCrossRefGoogle Scholar
  20. 20.
    Krammer PH: Drug-induced cd95 (apo-l/fas)-mediated apoptosis. Annals of Oncology 1998;9:39–39.CrossRefGoogle Scholar
  21. 21.
    Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH: Autocrine T-cell suicide mediated by APO-l/(Fas/CD95). Nature 1995;373:438–441.PubMedCrossRefGoogle Scholar
  22. 22.
    Faris M, Kokot N, Latinis K, Kasibhatla S, Green DR, Koretzky GA, Nel A: The c-jun n-terminal kinase cascade plays a role in stress-induced apoptosis in jurkat cells by up-regulating fas ligand expression. Journal of Immunology 1998;160:134–144.Google Scholar
  23. 23.
    Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR: Dna-damaging agents induce expression of fas ligand and subsequent apoptosis in t-lymphocytes via the activation of nf-kb and ap-1. Molecular Cell 1998; 1:543–551.PubMedCrossRefGoogle Scholar
  24. 24.
    Peter ME, Krammer PH: Mechanisms of CD95 (APO-l/Fas)-mediated apoptosis. Current Opinion inlmmunology 1998;10:545–551.CrossRefGoogle Scholar
  25. 25.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME: Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal 1998;17:1675–1687PubMedCrossRefGoogle Scholar
  26. 26.
    Li HL, Zhu H, Xu CJ, Yuan JY: Cleavage of bid by caspase-8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell 1998;94:491–501.PubMedCrossRefGoogle Scholar
  27. 27.
    Luo X, Budihardjo 1, Zou H, Slaughter C, Wang XD: Bid, a bcl2 interacting protein, mediates cytochrome-c release from mitochondria in response to activation of cell-surface death receptors. Cell 1998;94:481–490.PubMedCrossRefGoogle Scholar
  28. 28.
    Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, Delapompa JL, Kagi D, Khoo W, Potter J, Yoshida R, et al.: Differential requirement for caspase-9 in apoptotic pathways in-vivo. Cell 1998;94:339–352.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MSS, Rakic P, Flavell RA: Reduced apoptosis and cytochrome-c-mediated caspase activation in mice lacking caspase-9. Cell 1998;94:325–337.PubMedCrossRefGoogle Scholar
  30. 30.
    Bergeron L, Perez GI, Macdonald G, Shi LF, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JCM, Hara H, Moskowitz MA, et al.: Defects in regulation of apoptosis in caspase-2-deficient mice. Genes & Development 1998;12:1304–1314.Google Scholar
  31. 31.
    Wang SY, Miura M, Jung YK, Zhu H, Li E, Yuan JY: Murine caspase-11, an ice-interaeting protease, is essential for the activation of ice. Cell 1998;92:501–509.PubMedCrossRefGoogle Scholar
  32. 32.
    Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D: Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally. Immunity 1998;9:267–276.PubMedCrossRefGoogle Scholar
  33. 33.
    Rao L, Perez D, White E: Lamin proteolysis facilitates nuclear events during apoptosis. Journal of Ceil Biology 1996;135:1441–1455.CrossRefGoogle Scholar
  34. 34.
    Cheng EHY, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM: Conversion of bcl-2 to a bax-like death effector by caspases. Science 1997;278:1966–1968.PubMedCrossRefGoogle Scholar
  35. 35.
    Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu KT, Mcgarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT: Caspase-3-generated fragment of gelsolin-effector of morphological change in apoptosis. Science 1997;278:294–298.PubMedCrossRefGoogle Scholar
  36. 36.
    Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997;276:1571–1574.PubMedCrossRefGoogle Scholar
  37. 37.
    Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;393:396–396.CrossRefGoogle Scholar
  38. 38.
    Liu X, Zou H, Slaughter C, Wang X: DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89:175–184.PubMedCrossRefGoogle Scholar
  39. 39.
    Martin SJ, Green DR: Protease activation during apoptosis: death by a thousand cuts? Cell 1995;82:349–352.PubMedCrossRefGoogle Scholar
  40. 40.
    Yue TL, Wang C, Romanic AM, Kikly K, Keller P, De Wolf WEJ, Hart, TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ: Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. Journal of Molecular & Cellular Cardiology 1998, 30:495–507.CrossRefGoogle Scholar
  41. 41.
    Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson, DW, Rodger IW: Colocalization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. Journal of Molecular & Cellular Cardiology 1998;30:733–742.CrossRefGoogle Scholar
  42. 42.
    Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA: Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proceedings of the National Academy of Sciences of the United States of America 1997;94:2007–2012.PubMedCrossRefGoogle Scholar
  43. 43.
    Yaoita H, Ogawa K, Maehara K, Maruyama Y: Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97:276–281.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Thomas Rudel
    • 1
  1. 1.Max-Planck Institut BerlinBerlin

Personalised recommendations