Inhibition of cardiac myocyte apoptosis by gp130-dependent cytokines

  • Kai C. Wollert
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)


In animal models and in patients with end-stage heart failure, a small fraction of cardiac myocytes undergoes programmed cell death (apoptosis) (1–4). In general, cardiac failure is preceded by a hypertrophic response of the myocardium, that allows the heart to maintain cardiac output despite a chronic increase in hemodynamic load. However, sustained hemodynamic overloading eventually causes a transition from hypertrophy to heart failure, characterized by chamber dilatation, progressive contractile dysfunction and impaired survival. The observation that the prevalence of apoptotic cardiomyocytes is increased in the failing heart but not during the initial stage of compensatory hypertrophy has given rise to the hypothesis that cardiac myocyte dropout by apoptosis may be one mechanism contributing to the progression of cardiac hypertrophy to heart failure (5,6).


Cardiac Myocytes Leukemia Inhibitory Factor Cardiac Myocyte Apoptosis Chronic Pressure Overload Cardiac Myocyte Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327.PubMedCrossRefGoogle Scholar
  2. 2.
    Li Z, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.PubMedGoogle Scholar
  3. 3.
    Narula J, Haider N, Virmani R, di Salvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:H82–H89.CrossRefGoogle Scholar
  4. 4.
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.PubMedCrossRefGoogle Scholar
  5. 5.
    Bing OHL. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 1994;26:943–948.PubMedCrossRefGoogle Scholar
  6. 6.
    Colucci WS. Apoptosis in the heart, N Engl J Med 1996;335:1224–1226.PubMedCrossRefGoogle Scholar
  7. 7.
    Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishihara K, Brown JH, Chien KR. The α. ia-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 1993;268:15374–15380.PubMedGoogle Scholar
  8. 8.
    Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–20562.PubMedGoogle Scholar
  9. 9.
    Sadoshima J, Izumo S. Molecular characterization of angiotensin 11-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the ATi receptor subtype. Circ Res 1993;73:413–423.PubMedGoogle Scholar
  10. 10.
    Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke fetal contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85:507–514.PubMedGoogle Scholar
  11. 11.
    Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Schichiri M, Koike A, Nogami A, Marumo F. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 1993;S7:1715–1721.Google Scholar
  12. 12.
    Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-lβ modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995, 96:1093–1099.PubMedGoogle Scholar
  13. 13.
    Yokoyama T, Nakano M, Bednarczyk JL, Mclntyre BW, Entmann ML, Mann DL. Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252.PubMedGoogle Scholar
  14. 14.
    Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29:859–870.PubMedCrossRefGoogle Scholar
  15. 15.
    Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell dearth. J Clin Invest 1996;98;2854–2865.PubMedGoogle Scholar
  16. 16.
    Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998;83:516–522.PubMedGoogle Scholar
  17. 17.
    Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-α confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998;97:1392–1400.PubMedGoogle Scholar
  18. 18.
    Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, bak, and bcl-x. Circ Res 1999;84:21–33.PubMedGoogle Scholar
  19. 19.
    Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gpl30. Blood 1995;86:1243–1254.PubMedGoogle Scholar
  20. 20.
    Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura SI, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986, 324:73–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O’Hara RM, Leary AC, Sibley B, Clark SC, Williams DA, Yang YC. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990;87:7512–7516.PubMedCrossRefGoogle Scholar
  22. 22.
    Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, Nice EC, Kelso A, Metcalf D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 1987;6:3995–4002.PubMedGoogle Scholar
  23. 23.
    Malik N, Kallestad JC, Gunderson NL, Austin SD, Neubauer MG, Ochs V, Marquardt H, Zarling JM, Shoyab M, Wei CM, Linsley PS, Rose TM. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol 1989;9:2847–2853.PubMedGoogle Scholar
  24. 24.
    Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 1989;342:920–923.PubMedCrossRefGoogle Scholar
  25. 25.
    Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR, Baker JB, Wood WI. Expression cloning of cardiotrophin i, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92:1142–1146.PubMedCrossRefGoogle Scholar
  26. 26.
    Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gpl30. Cell 1990;63:1149–1157.PubMedCrossRefGoogle Scholar
  27. 27.
    Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckmann MP. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gpl30. EMBO J 1991; 10:2839–2848.PubMedGoogle Scholar
  28. 28.
    Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFNβ 2) receptor. Science 1988;241:825–828.PubMedCrossRefGoogle Scholar
  29. 29.
    Hilton DJ, Hilton AA, Raicevic A, Rakar S, Harrison-Smith M, Gough NM, Begley CG, Metcalf D, Nicola NA, Willson TA. Cloning of a murine IL-11 receptor a-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J 1994;13:4765–4775.PubMedGoogle Scholar
  30. 30.
    Davis S, Aldrich TH, Valenzuela DM, Wong V, Furth ME, Squinto SP, Yancopoulos GD. The receptor for ciliary neurotrophic factor. Science 1991;253:59–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Robledo O, Fourcin M, Chevalier S, Guillet C, Auguste P, Pouplard-Barthelaix A, Pennica D, Gascan H, Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem 1997;272:4855–4863.PubMedCrossRefGoogle Scholar
  32. 32.
    Narazaki M, Witthuhn BA, Yoshida K, Silvennoinen O, Yasukawa K, Ihle JN, Kishimoto T, Taga T. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gpl30. Proc Nati Acad Sci USA 1994;91:2285–2289.CrossRefGoogle Scholar
  33. 33.
    Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn BA, Quelle FW, Silvennoinen O, Barbieri G, Pellegrini S, Ihle JN, Yancopoulos GD. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 β receptor components. Science 1994;263:92–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996;84:331–334.PubMedCrossRefGoogle Scholar
  35. 35.
    Daeipour M, Kumar G, Amaral MC, Nel AE. Recombinant IL-6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF10. J Immunol 1993;150:4743–4753.PubMedGoogle Scholar
  36. 36.
    Kumar G, Gupta S, Wang S, Nel AE. Involvement of janus kinases, p52shc, Raf-1, and MEK-1 in the IL-6-induced mitogen-activated protein kinase cascade of a growth-responsive B cell line. J Immunol 1994;153:4436–4447.PubMedGoogle Scholar
  37. 37.
    Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T, Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gpl30 in cardiac myocytes. Circulation 1996;94:2626–2632.PubMedGoogle Scholar
  38. 38.
    Kodama H, Fukuda K, Pan J, Makino S, Baba A, Hori S, Ogawa S. Leukemia inhibitory factor, a potent cardiac hypertrophie cytokine, activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1997;81:656–663.PubMedGoogle Scholar
  39. 39.
    Wollert KC, Chien KR. Cardiotrophin-1 and the role of gpl30-dependent signaling pathways in cardiac growth and development. J Mol Med 1997;75:492–501.PubMedCrossRefGoogle Scholar
  40. 40.
    Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, Vernallis AB, Heath JK, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gpl30/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996;271:9535–9545.PubMedCrossRefGoogle Scholar
  41. 41.
    Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gpl30, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92:4862–4866.PubMedCrossRefGoogle Scholar
  42. 42.
    Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin-1 inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997;272:5783–5791.PubMedCrossRefGoogle Scholar
  43. 43.
    Stephanou A, Brar B, Heads R, Knight RD, Marber MS, Pennica D, Latchman DS. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardie myocytes and protects them from stressful stimuli. J Mol Cell Cardiol 1998;30:849–855.PubMedCrossRefGoogle Scholar
  44. 44.
    Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gpl30 transduces hypertrophie signals via STAT3 in cardiac myocytes. Circulation 1998;98:346–352.PubMedGoogle Scholar
  45. 45.
    Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K, Kishimoto T. Signals through gpl30 upregulate bcl-x gene expression via STATl-binding cis-element in cardiac myocytes. J Clin Invest 1997;99:2898–2905.PubMedGoogle Scholar
  46. 46.
    Hirota H, Chen J, Betz UAK, Rajewsky K, Gu Y, Ross J, Müller W, Chien KR. Loss of a gpl30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97:189–198.PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T. Targeted disruption of gpl30, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 1996, 93. 407–411.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T. Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 1995;91:1520–1524.PubMedGoogle Scholar
  49. 49.
    Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 1998;98:149–156.PubMedGoogle Scholar
  50. 50.
    Takimoto Y, Aoyama T, Pennica D, Shinoda E, Keyamura R, Hattori R, Yui Y, Sasayama S. Augmented gene expression of cardiotrophin-1 and its receptor component, gpl30, in both ventricles after myocardial infarction in the rat. Circulation 1998 (suppl);98:1–839.Google Scholar
  51. 51.
    Wang F, Seta Y, Baumgarten G, Mann DL. Expression of leukemia inhibitory factor in the adult mammalian heart. Dynamic regulation and functional significance. Circulation 1998 (suppl);98:1–247.Google Scholar
  52. 52.
    Sakai S, Miyauchi T, Kobayashi T, Yamaguchi I, Sugishita Y. Involvement of endogenous interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) in the development of cardiac hypertrophy induced by pressure-overload in vivo in rats. Circulation 1998 (suppl);98;1–421.Google Scholar
  53. 53.
    Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith W, Michael LH, Entmann ML. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 1999;99:546–551.PubMedGoogle Scholar
  54. 54.
    Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A.. Elevated levels of interleukin-6 in unstable angina. Circulation 1996;94:874–877.PubMedGoogle Scholar
  55. 55.
    Ikeda U, Ohkawa F, Seino Y, Yamamoto K, Hidaka Y, Kasahara T, Kawai T, Shimada K. Serum interleukin 6 levels become elevated in acute myocardial infarction. J Mol Cell Cardiol 1992;24:579–584.PubMedCrossRefGoogle Scholar
  56. 56.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction. A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–1206.PubMedCrossRefGoogle Scholar
  57. 57.
    Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31:391–398.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Kai C. Wollert
    • 1
  1. 1.Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations