BCL-2 family members and mitochondria

  • Klaus Schlottmann
  • Jürgen Schölmerich
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)


The process of apoptosis is often subdivided into three phases: the initiation phase which depends on the apoptosis stimulus, the effector phase which underlies regulation of intracellular signaling and the degradation phase which is common to all forms of apoptosis and which is beyond regulation (1). The Bcl-2 family represents one of the most important families of apoptosis relevant proteins acting in the effector phase of apoptosis. In most cases of programmed cell death Bcl-2 proteins influence the decision of a cell to survive or to die. This review will focus on the basic molecular function of Bcl-2 family members in apoptosis as well as the interplay of some of the bcl-2 members with mitochondria in the context of mitochondrial permeability transition and mitochondrial release of apoptogenic factors.


Mitochondrial Permeability Transition High Conductance State Adenine Nucleotide Transporter Cardiac Biology Induce Membrane Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B: The biochemistry of programmed cell death. Faseb J 1995; 9:1277–87.PubMedGoogle Scholar
  2. 2.
    Hengartner MO, Horvitz HR: C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76:665–76.PubMedGoogle Scholar
  3. 3.
    Bakhshi A, Minowada J, Arnold A, Cossman J, Jensen JP, Whang-Peng J, Waldmann TA, Korsmeyer SJ: Lymphoid blast crises of chronic myelogenous leukemia represent stages in the development of B-cell precursors. N Engl J Med 1983; 309:826–31.PubMedGoogle Scholar
  4. 4.
    Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Noweil PC, Croce CM: Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(ll;14) chromosome translation. Science 1984; 224:1403–6.PubMedGoogle Scholar
  5. 5.
    Cleary ML, Smith SD, Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) trans location. Cell 1986; 47:19–28.PubMedGoogle Scholar
  6. 6.
    Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M: Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275:967–9.PubMedGoogle Scholar
  7. 7.
    Brimmell M, Mendiola R, Mangion J, Packham G: BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsateliite instability. Oncogene 1998; 16:1803–12.PubMedGoogle Scholar
  8. 8.
    Ouyang H, Furukawa T, Abe T, Kato Y, Horii A: The BAX gene, the promoter of apoptosis, is mutated in genetically unstable cancers of the colorectum, stomach, and endometrium. Clin Cancer Res 1998; 4:1071–84.PubMedGoogle Scholar
  9. 9.
    Vaux DL, Cory S, Adams JM: Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335:440–2.PubMedGoogle Scholar
  10. 10.
    Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ: Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 1990; 144:3602–10.PubMedGoogle Scholar
  11. 11.
    Kamesaki S, Kamesaki H, Jorgensen TJ, Tanizawa A, Pommier Y, Cossman J: bcl-2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerase II-induced DNA strand breaks and their repair. Cancer Res 1993; 53. 4251–6.PubMedGoogle Scholar
  12. 12.
    Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ: bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67:879–88.PubMedGoogle Scholar
  13. 13.
    Chao DT, Korsmeyer SJ: BCL-2 family: regulators of cell death. Annu Rev Immunol1998; 16:395–419.PubMedGoogle Scholar
  14. 14.
    Minn AJ, Swain RE, Ma A, Thompson CB: Recent progress on the regulation of apoptosis by Bcl-2 family members. Adv Immunol 1998; 70:245–79.PubMedGoogle Scholar
  15. 15.
    Adams JM, Cory S: The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281:1322–6.PubMedGoogle Scholar
  16. 16.
    Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY: Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 1994; 91:3700–4.PubMedGoogle Scholar
  17. 17.
    Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, et al.: Massive ceil death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267:1506–10.PubMedGoogle Scholar
  18. 18.
    Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed ceil death. Cell 1993; 74:609–19.PubMedGoogle Scholar
  19. 19.
    Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994; 369:321–3.PubMedGoogle Scholar
  20. 20.
    Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ: A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. Embo J 1995; 14:5589–96.PubMedGoogle Scholar
  21. 21.
    Zha H, Aime-Sempe C, Sato T, Reed JC: Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996; 271:7440–54.PubMedGoogle Scholar
  22. 22.
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW: X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381:335–41.PubMedGoogle Scholar
  23. 23.
    Hunter JJ, Parslow TG: A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J Biol Chem 1996; 271:8521–34.PubMedGoogle Scholar
  24. 24.
    Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW: Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275:983–6.PubMedGoogle Scholar
  25. 25.
    Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ, Ebb RG, Subramanian T, Chittenden T, Lutz RJ, et al.: Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 1995; 11:1921–8.PubMedGoogle Scholar
  26. 26.
    Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ: BID: a novel BH3 domain-only death agonist. Genes Dev 1996; 10:2859–69.PubMedGoogle Scholar
  27. 27.
    Hsu SY, Hsueh AJ: A splicing variant of the Bcl-2 member Bok with a truncated BH3 domain induces apoptosis but does not dimerize with antiapoptotic Bcl-2 proteins in vitro. J Biol Chem 1998; 273:30139–46.PubMedGoogle Scholar
  28. 28.
    Zha H, Reed JC: Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem 1997; 272:31482–8.PubMedGoogle Scholar
  29. 29.
    Cosulich SC, Worrall V, Hedge PJ, Green S, Clarke PR: Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol 1997; 7:913–20.PubMedGoogle Scholar
  30. 30.
    Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM: Bax-independent inhibition of apoptosis by Bcl-XL. Nature 1996; 379:554–6.PubMedGoogle Scholar
  31. 31.
    Inohara N, Ekhterae D, Garcia I, Carrio R, Merino J, Merry A, Chen S, Nunez G: Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bci-2 and Bcl-XL. J Biol Chem 1998; 273:8705–10.PubMedGoogle Scholar
  32. 32.
    Hanada M, Aime-Sempe C, Sato T, Reed JC; Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 1995; 270:11962–9.PubMedGoogle Scholar
  33. 33.
    Hunter JJ, Bond BL, Parslow TG: Functional dissection of the human Bcl2 protein: sequence requirements for inhibition of apoptosis. Mol Cell Biol 1996; 16:877–83.PubMedGoogle Scholar
  34. 34.
    Inohara N, Gourley TS, Carrio R, Muniz M, Merino J, Garcia I, Koseki T, Hu Y, Chen S, Nunez G: Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem 1998; 273:32479–86.PubMedGoogle Scholar
  35. 35.
    Wang HG, Rapp UR, Reed JC: Bcl-2 targets the protein kinase Raf-1 to mitochondria [see comments]. Cell 1996; 87:629–38.PubMedGoogle Scholar
  36. 36.
    Wang HG, Takayama S, Rapp UR, Reed JC. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci U S A 1996; 93:7063–8.PubMedGoogle Scholar
  37. 37.
    Shibasaki F, Kondo E, Akagi T, McKeon F: Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 1997; 386:728–31.PubMedGoogle Scholar
  38. 38.
    Chinnaiyan AM, KOR, Lane BR, Dixit VM: Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997; 275:1122–6.PubMedGoogle Scholar
  39. 39.
    Choi SS, Park IC, Yun JW, Sung YC, Hong SI, Shin HS: A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 1995; 11:1693–8.PubMedGoogle Scholar
  40. 40.
    D’Sa-Eipper C, Subramanian T, Chinnadurai G: bfl-1, a bcl-2 homologue, suppresses p53-induced apoptosis and exhibits potent cooperative transforming activity. Cancer Res 1996; 56:3879–82.PubMedGoogle Scholar
  41. 41.
    D’Sa-Eipper C, Chinnadurai G: Functional dissection of Bfl-1, a Bcl-2 homolog: anti-apoptosis, oncogene-cooperation and cell proliferation activities. Oncogene 1998; 16:3105–14.PubMedGoogle Scholar
  42. 42.
    Nakai M, Takeda A, Cleary ML, Endo T: The bcl-2 protein is inserted into the outer membrane but not into the inner membrane of rat liver mitochondria in vitro. Biochem Biophys Res Commun 1993; 196:233–9.PubMedGoogle Scholar
  43. 43.
    Krajewski S, Tanaka S, Takayama S, Schibier MJ, Fenton W, Reed JC: Investigation of the subcellular distribution of the bci-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53:4701–14.PubMedGoogle Scholar
  44. 44.
    Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y: Multiple subcellular localization of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res 1994; 54:2468–71.PubMedGoogle Scholar
  45. 45.
    Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC: Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem 1993; 268:25265–78.PubMedGoogle Scholar
  46. 46.
    Nguyen M, Branton PE, Walton PA, Oltvai ZN, Korsmeyer SJ, Shore GC: Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by ElB-defective adenovirus. J Biol Chem 1994; 269:16521–34.PubMedGoogle Scholar
  47. 47.
    Gonzalez-Garcia M, Garcia I, Ding L, O’Shea S, Boise LH, Thompson CB, Nunez G: bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc Natl Acad Sci U S A 1995; 92:4304–8.PubMedGoogle Scholar
  48. 48.
    Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW: Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. Embo J 1996; 15:4130–41.PubMedGoogle Scholar
  49. 49.
    Krajewski S, Krajewska M, Reed JC: Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res 1996; 56:2849–55.PubMedGoogle Scholar
  50. 50.
    Hsu YT, Wolter KG, Youle RJ: Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A 1997; 94:3668–72.PubMedGoogle Scholar
  51. 51.
    Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y: Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95:14681–6.PubMedGoogle Scholar
  52. 52.
    Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC: Regulated targeting of BAX to mitochondria. J Cell Biol 1998; 143:207–15.PubMedGoogle Scholar
  53. 53.
    Luo X, Budihardjo 1, Zou H, Slaughter C, Wang X: Bid, a Bci2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94:481–90.PubMedGoogle Scholar
  54. 54.
    Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94:491–501.PubMedGoogle Scholar
  55. 55.
    Gross A, Yin XM, Wang K, Wei MC, Jockei J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ: Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-Rl/Fas death. J Biol Chem 1999; 274:1156–63.PubMedGoogle Scholar
  56. 56.
    Yang E, Zha J, Jockei J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80:285–91.PubMedGoogle Scholar
  57. 57.
    Zha J, Harada H, Yang E, Jockei J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87:619–28.PubMedGoogle Scholar
  58. 58.
    Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC: Cloning and functional analysis of BAG-1: a novel Bci-2-binding protein with anti-cell death activity. Cell 1995; 80:279–84.PubMedGoogle Scholar
  59. 59.
    Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C, Comoglio PM: HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. Embo J 1996; 15:6205–12.PubMedGoogle Scholar
  60. 60.
    Fujita N, Nagahashi A, Nagashima K, Rokudai S, Tsuruo T: Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases. Oncogene 1998; 17:1295–304.PubMedGoogle Scholar
  61. 61.
    Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C, Michel MR: Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. Embo J 1998; 17:1268–78.PubMedGoogle Scholar
  62. 62.
    Hunter DR, Haworth RA, Southard JH: Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 1976; 251:5069–77.PubMedGoogle Scholar
  63. 63.
    Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979; 195:453–59.PubMedGoogle Scholar
  64. 64.
    Haworth RA, Hunter DR: The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 1979; 195:460–7.PubMedGoogle Scholar
  65. 65.
    Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 1979; 195:468–77.PubMedGoogle Scholar
  66. 66.
    Haworth RA, Hunter DR: Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol 1980; 54:231–6.PubMedGoogle Scholar
  67. 67.
    Zoratti M, Szabo I: The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241:139–76.PubMedGoogle Scholar
  68. 68.
    Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60:619–42.PubMedGoogle Scholar
  69. 69.
    Fournier N, Ducet G, Crevat A: Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 1987; 19:297–303.PubMedGoogle Scholar
  70. 70.
    Crompton M, Ellinger H, Costi A: Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 1988; 255:357–60.PubMedGoogle Scholar
  71. 71.
    Szabo I, Zoratti M: The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 1991; 266:3376–9.PubMedGoogle Scholar
  72. 72.
    Pastorino JG, Simbula G, Gilfor E, Hoek JB, Farber JL: Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. J Biol Chem 1994; 269:31041–6.PubMedGoogle Scholar
  73. 73.
    Hirsch T, Decaudin D, Susin SA, Marchetti P, Larochette N, Resche-Rigon M, Kroemer G: PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res 1998; 241:426–34.PubMedGoogle Scholar
  74. 74.
    Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G: Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281:2027–31.PubMedGoogle Scholar
  75. 75.
    Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 1997; 89:1145–53.PubMedGoogle Scholar
  76. 76.
    Ichas F, Mazat JP; From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochim Biophys Acta 1998; 1366:33–50.PubMedGoogle Scholar
  77. 77.
    Eguchi Y, Shimizu S, Tsujimoto Y: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57:1835–40.PubMedGoogle Scholar
  78. 78.
    Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185:1481–6.PubMedGoogle Scholar
  79. 79.
    Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K: Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95-and anticancer drug-induced apoptosis. J Exp Med 1998; 188:979–84.PubMedGoogle Scholar
  80. 80.
    Lemasters JJ: V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 1999; 276. G1–G6.PubMedGoogle Scholar
  81. 81.
    Qian T, Herman B, Lemasters JJ: The Mitochondrial Permeability Transition Mediates Both Necrotic and Apoptotic Death of Hepatocytes Exposed to Br-A23187. Toxicol Appl Pharmacol 1999; 154:117–25.PubMedGoogle Scholar
  82. 82.
    Kroemer G, Zamzami N, Susin SA: Mitochondrial control of apoptosis. Immunol Today 1997; 18:44–51.PubMedGoogle Scholar
  83. 83.
    Vayssiere JL, Petit PX, Risler Y, Mignotte B: Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A 1994; 91:11752–6.PubMedGoogle Scholar
  84. 84.
    Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML: Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130:157–67.PubMedGoogle Scholar
  85. 85.
    Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G: Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182:367–77.PubMedGoogle Scholar
  86. 86.
    Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G: Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181:1661–72.PubMedGoogle Scholar
  87. 87.
    Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, Kroemer G: Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis, J Immunol 1996; 157:512–21.PubMedGoogle Scholar
  88. 88.
    Kluck RM, Bossy Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis [see comments]. Science 1997; 275:1132–6.PubMedGoogle Scholar
  89. 89.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275:1129–32.PubMedGoogle Scholar
  90. 90.
    Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G: Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184:1331–41.PubMedGoogle Scholar
  91. 91.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397:441–6.PubMedGoogle Scholar
  92. 92.
    Krippner A, Matsuno-Yagi A, Gottlieb RA, Babior BM: Loss of function of cytochrome c in Jurkat cells undergoing fasmediated apoptosis. J Biol Chem 1996; 271:21629–36.PubMedGoogle Scholar
  93. 93.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90:405–13.PubMedGoogle Scholar
  94. 94.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91:479–89.PubMedGoogle Scholar
  95. 95.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES: Autoactivation of procaspase-9 by Apaf-1-mediatedoligomerization. Mol Cell 1998; 1:949–57.PubMedGoogle Scholar
  96. 96.
    Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW: Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell 1998; 94:739–50.PubMedGoogle Scholar
  97. 97.
    Hu Y, Benedict MA, Wu D, Inohara N, Nunez G: Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A 1998; 95:4386–91.PubMedGoogle Scholar
  98. 98.
    Pan G, O’Rourke K, Dixit VM: Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998; 273:5841–5.PubMedGoogle Scholar
  99. 99.
    Tang DG, Li L, Zhu Z, Joshi B: Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem Biophys Res Commun 1998; 242:380–4.PubMedGoogle Scholar
  100. 100.
    Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Halgren R, Rosen S, Kufe D, Kharbanda S, Anderson K: Cytochrome c-dependent and-independent induction of apoptosis in multiple myeloma cells. J Biol Chem 1997; 272:29995–7.PubMedGoogle Scholar
  101. 101.
    Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD: Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. Embo J 1997; 16:4639–49.PubMedGoogle Scholar
  102. 102.
    Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G: The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 1998; 187:1261–71.PubMedGoogle Scholar
  103. 103.
    Marzo I, Brenner C, Kroemer G: The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother 1998; 52:248–51.PubMedGoogle Scholar
  104. 104.
    Bossy-Wetzel E, Newmeyer DD, Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, Embo J 1998; 17:37–49.PubMedGoogle Scholar
  105. 105.
    Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC: Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95:4997–5002.PubMedGoogle Scholar
  106. 106.
    Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB: Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria [see comments]. Cell 1997; 91:627–37.Google Scholar
  107. 107.
    Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC: Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 1998; 143:217–24.PubMedGoogle Scholar
  108. 108.
    Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G: The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-l/CD95-and ceramide-induced apoptosis. J Exp Med 1997; 186:25–37.PubMedGoogle Scholar
  109. 109.
    Marzo 1, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N, Zamzami N, Kroemer G: Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 1998; 427:198–202.PubMedGoogle Scholar
  110. 110.
    Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR: Bax-induced Caspase Activation and Apoptosis via Cytochrome c Release from Mitochondria Is Inhibitable by BcI-xL. J Biol Chem 1999; 274:2225–2233.PubMedGoogle Scholar
  111. 111.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prvost MC, Alzari PM, Kroemer G: Mitochondrial Release of Caspase-2 and-9 during the Apoptotic Process. J Exp Med 1999; 189:381–394.PubMedGoogle Scholar
  112. 112.
    Reed JC, Jurgensmeier JM, Matsuyama S: Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1998; 1366:127–37.PubMedGoogle Scholar
  113. 113.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94:325–37.PubMedGoogle Scholar
  114. 114.
    Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB: Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385:353–7.PubMedGoogle Scholar
  115. 115.
    Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC: Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277:370–2.PubMedGoogle Scholar
  116. 116.
    Schendel SL, Xie Z, Montai MO, Matsuyama S, Montai M, Reed JC: Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci U S A 1997; 94:5113–8.PubMedGoogle Scholar
  117. 117.
    Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ: Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci U S A 1997; 94:11357–62.PubMedGoogle Scholar
  118. 118.
    Lam M, Bhat MB, Nunez G, Ma J, Distelhorst CW: Regulation of Bcl-xl channel activity by calcium. J Biol Chem 1998; 273:17307–10.PubMedGoogle Scholar
  119. 119.
    Matsuyama S, Schendel SL, Xie Z, Reed JC: Cytoprotection by Bcl-2 requires the pore-forming alphas and alpha6 helices. J Biol Chem 1998; 273:30995–1001.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Klaus Schlottmann
    • 1
  • Jürgen Schölmerich
    • 1
  1. 1.Universität RegensburgRegensburgGermany

Personalised recommendations