Oncogenes and p53

  • Franz Kohlhuber
  • Dirk Eick
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)


The tumor suppressor gene p53 plays a major role in cellular stress response and has been found to be mutated or deleted in more than half of all human tumors. Many signal pathways and factors contribute to control the action of p53. Here we will focus on the control function of p53 after cell cycle activation by oncogenes.


Simian Virus Cell Cycle Activation Ubiquitin Ligase Activity Myocyte Apoptosis Transcriptional Activation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lane, DP, Crawford, LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278:261–3.PubMedCrossRefGoogle Scholar
  2. 2.
    DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54:275–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Fanning E, Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem 1992; 61:55–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–57.PubMedGoogle Scholar
  5. 5.
    Wyllie AH. Apoptosis and carcinogenesis, Eur J Cell Biol 1997; 73:189–97.PubMedGoogle Scholar
  6. 6.
    Ding HF, Fisher DE. Mechanisms of p53-mediated apoptosis. Crit Rev Oncog 1998; 9:83–98.PubMedGoogle Scholar
  7. 7.
    Dragovich T, Rudin CM, Thompson CB. Signal transduction pathways that regulate ceil survival and cell death. Oncogene 1998; 17:3207–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Eick D, Hermeking H. Viruses as pacemakers in the evolution of defence mechanisms against cancer. Trends Genet 1996; 12:4–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998; 12:2973–83.PubMedGoogle Scholar
  10. 10.
    Sherr CJ. Tumor surveillance via the ARF-p53 pathway. Genes Dev 1998; 12:2984–91.PubMedGoogle Scholar
  11. 11.
    Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12:2424–33.PubMedGoogle Scholar
  12. 12.
    Johnson DG, Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Front Biosci 1998; 3:447–8.Google Scholar
  13. 13.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81:323–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Nevins JR. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ 1998; 9:585–93.PubMedGoogle Scholar
  15. 15.
    Wolf DA, Hermeking H, Albert T, Herzinger T, Kind P, Eick D. A complex between E2F and the pRb-related protein pl30 is specifically targeted by the simian virus 40 large T antigen during cell transformation. Oncogene 1995; 10:2067–78.PubMedGoogle Scholar
  16. 16.
    Bissonnette RP, Echeverri F, Mahboubi A, Green, DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992; 359:552–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Harrington EA, Bennett MR, Fanidi A, Evan GI. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. Embo J 1994; 13:3286–95.PubMedGoogle Scholar
  18. 18.
    Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95:2266–74.PubMedGoogle Scholar
  19. 19.
    Hermeking H, Wolf DA, Kohlhuber F, Dickmanns A, Billaud M, Fanning E, Eick D. Role of c-myc in simian virus 40 large tumor antigen-induced DNA synthesis in quiescent 3T3-L1 mouse fibroblasts. Proc Natl Acad Sci U S A 1994; 91:10412–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 78:703–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Colston JT, Chandrasekar B, Freeman GL. Expression of apoptosis-related proteins in experimental coxsackievirus myocarditis. Cardiovasc Res 1998; 38:158–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Bialik S, Geenen DL, Sasson IE, Cheng R, Homer JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently ofp53. J Clin Invest 1997; 100:1363–72.PubMedGoogle Scholar
  23. 23.
    Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. Embo J 1991; 10:133–41.PubMedGoogle Scholar
  24. 24.
    Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69:119–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Hermeking H, Eick D. Mediation of c-Myc-induced apoptosis by p53. Science 1994; 265:2091–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21wafl/cip1. Genes Dev 1994; 8:2817–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci 1998;3:250–68.Google Scholar
  28. 28.
    Hermeking H, Funk JO, Reichert M, Ellwart JW, Eick D. Abrogation of p53-induced cell cycle arrest by c-Myc: evidence for an inhibitor of p21 WAF1/CIP1/SD11. Oncogene 1995; 11:1409–15.PubMedGoogle Scholar
  29. 29.
    Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. Embo J 1996; 15:6595–604.PubMedGoogle Scholar
  30. 30.
    Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10:1054–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH. pl4ARF links the tumour suppressors RB and p53. Nature 1998; 395:124–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Chin L, Pomerantz J, DePinho RA. The lNK4a/ARF tumor suppressor: one genetwo products-two pathways. Trends Biochem Sci 1998; 23:291–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Honda R, Yasuda H. Association of p19(ARF) with mdm2 inhibits ubiquitin ligase activity of mdm2 for tumor suppressor p53. Embo J 1999; 18:22–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A 1998; 95:8292–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395:125–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA. The Ink4a tumor suppressor gene product, pl9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92:713–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Nati Acad Sci U S A 1998; 95:13194–9.CrossRefGoogle Scholar
  38. 38.
    de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW. ElA signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 1998; 12:2434–42.PubMedGoogle Scholar
  39. 39.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, pl4ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J 1998; 17:5001–14.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Franz Kohlhuber
    • 1
  • Dirk Eick
    • 1
  1. 1.GSF-ForschungszentrumMünchenGermany

Personalised recommendations