Estrogens and the prevention of cardiac apoptosis

  • Christian Grohé
  • Rainer Meyer
  • Hans Vetter
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)


A large array of cardiac diseases such as hypertensive heart disease and cardiac remodeling after myocardial infarction display significant gender-based differences (1, 2, 3). In this context it has been shown that during the process of aging cardiac number and diameter vary significantly between men and women. While cardiac myocytes of male patients tend to develop hypertrophy and polyploidy, cardiac myocytes of female patients remain consistent over time in terms of size and number of nuclei (4). The underlying mechanisms of this process remain to be elucidated. However, it is remarkable that the incidence of cardiac disease in female gender reveals a significant increase after the onset of menopause (5). Therefore it has been hypothesized that the decline of ovarian sex hormones after the onset of menopause, in particular estrogens, play an important role in the pathogenesis of cardiac disease in women. The role of estrogen in the pathogenesis of this process is currently under investigation (6–11). The influence of estrogen on the development of cardiac diseases can be divided in systemic and direct effects on the cardiovascular system. Systemic effects include the influence of sex hormones on lipid and insulin metabolism (12, 13). Furthermore, it has become evident that estrogens display a variety of genomic and non-genomic effects on cardiovascular tissues that may modulate the respective phenotype of these tissues. Two different estrogen receptors have been identified so far, estrogen receptor α and estrogen receptor β. These two subtypes differ in ligand binding as well as in DNA binding properties (14-18).


Estrogen Receptor Hypertensive Heart Disease Ovariectomized Animal Estrogen Withdrawal Left Ventricular Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahlberg ST. Gender difference in the risk factors for sudden cardiac death. Cardiology 1990; 77:suppl2:31–40.PubMedGoogle Scholar
  2. 2.
    Marcus R, Krause L, Weder AB, Dominguez-Mejia AN, Schork D, Julius S. Sex-specific determinants of increased left ventricular mass in the Tecumseh blood pressure study. Circulation 1994;90: 928–936.PubMedGoogle Scholar
  3. 3.
    Gardin, JM, Wagenknecht LE, Anton-Culver H, Flack J, Gidding S, Jurosaki T, Wong ND, Manolio TA. Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. Circulation 1995; 92: 380–387.PubMedGoogle Scholar
  4. 4.
    Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P. Gender differences and aging: effects on the human heart: J Am Coll Cardiol 1995; 26: 1068–1079.PubMedCrossRefGoogle Scholar
  5. 5.
    Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and the risk of cardiovascular disease: The Framingham Study. Ann Intern Med 1976; 85: 447–452.PubMedGoogle Scholar
  6. 6.
    Node K, Kitakaze M, Kosaka H, Minamino T, Sato H, Kuzuya T, Hori M. Roles of NO and Ca2+-activated K+ channels in coronary vasodilation induced by 17β-estradiol in ischemic heart failure. FASEBJ 1997; 11:793–799.Google Scholar
  7. 7.
    Caulin-Glaser T, Garcia-Gardena G, Sarrel P, Sessa WC, Bender JR. 17β-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic calcium Ca2+ mobilization. Circ Res 1997; 81: 885–892.PubMedGoogle Scholar
  8. 8.
    Rubanyi GM, Freay AD, Kauser K, Sukovich D, Burton G, Lubahn DB, Couse JF, Curtis SW, Korach KS. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender differences and effect of estrogen receptor gene disruption. J Clin Invest 1997; 99: 2429–2437.PubMedGoogle Scholar
  9. 9.
    MacRitchie AM, Jun SS, Chen Z, German Z, Yuhanna IS, Sherman TS, Shaul PW. Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ Res 1997; 81: 355–362.PubMedGoogle Scholar
  10. 10.
    Grohé C, Kahlert S, Lobbert K, Karas RH, Stimpel M, Vetter H, Neyses L. Cardiac myocytes and cardiac fibroblasts contain functional estrogen receptors. FEBS-Letters 1997; 416: 107–112.PubMedCrossRefGoogle Scholar
  11. 11.
    Grohé C, Kahlert S, Löbbert K, van Eickels M, Stimpel M, Vetter H, Neyses L. Effects of moexiprilat on estrogen-stimulated cardiac fibroblast growth. Br J Pharm 1997; 121: 1350–1354.CrossRefGoogle Scholar
  12. 12.
    Blum A, Cannon RO. Effects of oestrogens and selective oestrogen receptor modulators on serum iipoproteins and vascular function. Curr Opin Lipidol 1998; 9: 575–586.PubMedCrossRefGoogle Scholar
  13. 13.
    Gustaffson JA. Therapeutic potential of selective estrogen receptor modulators. Curr Opin Chem Biol 1998; 2: 508–511.CrossRefGoogle Scholar
  14. 14.
    Walter P, Green S, Green G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M, Chambon P. Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci USA 1985; 82: 7889–7893.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S. Gustafsson JA. Cloning of a novel estrogen receptor expressed in rat prostrate and ovary. Proc Natl Acad Sci 1996; 93: 5925–5930.PubMedCrossRefGoogle Scholar
  16. 16.
    Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustaffson JA, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERα and ERβ at AP 1 sites. Science 1997; 277: 1508–1510.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuiper GGJM., Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specifity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 1997; 188: 863–870.CrossRefGoogle Scholar
  18. 18.
    Cowley SM, Hoare S, Mosselman S, Parker MG. Estrogen receptors α and β form heterodimers on DNA. J Biol Chem 1997; 32: 19858–19862.CrossRefGoogle Scholar
  19. 19.
    Grohé, C, Kahlert S, Löbbert K, Vetter H. Expression of oestrogen receptor a and b: role of local oestrogen synthesis. J Endocrinol 1998; 156: R1–R7.PubMedCrossRefGoogle Scholar
  20. 20.
    Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptors. Circulation 1994; 89: 1943–1950.PubMedGoogle Scholar
  21. 21.
    Meyer R, Linz KW, Surges R, Meinardus S, Vees J, Hoffmann A, Windholz O, Grohé C. Rapid modulation of L-type calcium current by acutely applied oestrogens in isolated cardiac myocytes from human, guinea pig, and rat. Experimental Physiology 1998; 83: 305–321.PubMedGoogle Scholar
  22. 22.
    Grohé C, Kahlert S, Nüdling S, Vetter H, Meyer R. Oestrogen activates the MAPK and JNK signal transduction pathway in rat cardiac myocytes. J Physiol (abstract) 1997; 11: 821.Google Scholar
  23. 23.
    Migliaccio A, Di Domenico M, Castoria G, deFalco A, Bontempo P, Nola, E, Auricchio F. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–1300.PubMedGoogle Scholar
  24. 24.
    Jiang C, Poole-Wilson PA, Sarrel PM., Mochizuki S, Collins P, Mcleod KT. Effect of 17β-oestradiol on concentration, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Brit J Pharm 1992; 106: 739–745.Google Scholar
  25. 25.
    Morley P, Whitfield JF, Vanderhyden BC, Tsang BK, Schwartz JL. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 1992; 131: 1305–1312PubMedCrossRefGoogle Scholar
  26. 26.
    Fortuno MA, Ravassa S, Etayo JC, Diez J: Overexpression of bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: effects of ATI blockade with losartan. Hypertension 1998; 32: 280–286.PubMedGoogle Scholar
  27. 27.
    Diez J, Fortuno MA, Ravassa S: Apoptosis in hypertensive heart diease. Curr Opin Cardiol 1998; 13:317–325.PubMedGoogle Scholar
  28. 28.
    Brömme HJ, Holtz J: Apoptosis in the heart: when and why? Mol Cell Biochem 1996; 163/164: 261–275.CrossRefGoogle Scholar
  29. 29.
    Bachmann J, Wagner J, Haufe C, Wystrychowski A, Ciechanowicz A, Ganten D: Modulation of blood pressure and the renin-angiotensin system in transgenic and spontaeously hypertensive rats after ovariectomy. J Hypertens 1993; 11,(suppl 5): 226–227.Google Scholar
  30. 30.
    Ing DJ, Zang J. Dzau VJ, Webster KA, Bishopric NH: Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, bak, and bcl x. Circ Res 1999; 84: 21–33.PubMedGoogle Scholar
  31. 31.
    Hetts SW: To die or not to die. JAMA 1998; 279: 300–307.PubMedCrossRefGoogle Scholar
  32. 32.
    Kothaka S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997; 278: 294–298.CrossRefGoogle Scholar
  33. 33.
    Huang Y, Ray S, Reed JC, Ibrado AM, Tang C, Nawabi A, Bhalla K: Estrogen increases intracellular p26bcl-2 to p21bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat 1997; 42: 73–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Tomkinson A, Reeve J, Shaw RW, Noble BS: The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 1997; 82: 3128–3135.PubMedCrossRefGoogle Scholar
  35. 35.
    Berman JR, McCarthy MM, Kyprianou N: Effect of estrogen withdrawal on nitric oxide synthase expression and apoptosis in the rat vagina. Urology 1998; 51: 650–656.PubMedCrossRefGoogle Scholar
  36. 36.
    Spyridopulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW: Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. Circulation 1997; 95: 1505–1514.Google Scholar
  37. 37.
    Alvarez Rj, Gips SJ, Moldovan N, Wilhide CC, Milliken EE, Hruban RH, Silverman HS, Dang CV, Goldschmidt-Clermont PJ: 17-beta estradiol inhibits apoptosis of endothelial cells. Biochem Biophys Res Commun 1997; 237: 372–381.PubMedCrossRefGoogle Scholar
  38. 38.
    Simoncini T, De Caterina R, Genazzani AR: Selective estrogen receptor modulators: different actions on vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cells. J Clin Endocrinoi Metab 1999; 84: 815–818.CrossRefGoogle Scholar
  39. 39.
    Kim YM, Bombeck CA, Billiar TR: Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84:253–256.PubMedGoogle Scholar
  40. 40.
    Nuedling S, Kahlert S, Loebbert K, Doevendans P, Meyer R, Vetter H, Grohé C: 17β-Estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 1999, in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Christian Grohé
    • 1
  • Rainer Meyer
    • 1
  • Hans Vetter
    • 1
  1. 1.Universität BonnBonnGermany

Personalised recommendations