Skip to main content

Apoptosis in myocardial infarction

  • Chapter
Apoptosis in Cardiac Biology

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 5))

Abstract

Accumulating evidence suggests that programmed cell death plays an important role in myocardial infarction. The occurrence of programmed cell death has clearly been shown in several clinical (1,2,3) and experimental settings involving myocardial injury. Experimental data in vivo and in vitro suggest that cardiomyocytes are able to undergo apoptosis during hypoxia (4,5), hypoxia-reoxygenation (6,7), myocardial infarction (8,9), ischemia-reperfusion (10,11), and heart failure (12,13). Based on these studies the present concept of myocardial injury attributes the major portion of cell loss during cardiac ischemia and reperfusion to primary necrosis (14,15). However, based on the observation that apoptosis can be the early and predominant form of cell death in infarcted human myocardium, the possibility of apoptosis as inducer of secondary necrosis has already been raised (9,16). Thus, investigating the role of programmed cell death in myocardial infarction as well as documenting its underlying mechanisms may lead to new therapeutic strategies to prevent serious cell loss following ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olivetti G, Quaini F, Sala R, Lagraste C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1997; 28: 2005–2016.

    Article  Google Scholar 

  2. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131–1141.

    Article  PubMed  CAS  Google Scholar 

  3. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 1995; 146: 1325–1331.

    PubMed  CAS  Google Scholar 

  4. Tanaka M, Itoh H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426–433.

    PubMed  CAS  Google Scholar 

  5. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O’Neill L, Cirelli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997; 99: 2635–2643.

    PubMed  CAS  Google Scholar 

  6. Laderoute KR, Webster KA. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 1997; 80: 336–340.

    PubMed  CAS  Google Scholar 

  7. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 1997; 100: 1813–1821.

    PubMed  CAS  Google Scholar 

  8. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996; 74: 86–107.

    PubMed  CAS  Google Scholar 

  9. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat heart myocardium. Circ Res 1996; 79: 949–956.

    PubMed  CAS  Google Scholar 

  10. Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996; 97: 2391–2398.

    PubMed  CAS  Google Scholar 

  11. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr, Feuerstein GZ. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 1998; 82: 166–174.

    PubMed  CAS  Google Scholar 

  12. Sabbah HN, Sharov VG. Apoptosis in heart failure. Prog Cardiovasc Dis 1998; 40: 549–562.

    Article  PubMed  CAS  Google Scholar 

  13. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182–1189.

    Article  PubMed  CAS  Google Scholar 

  14. Maulik N, Yoshida T, Das DK. Oxidative stress developed during the reperfusion of ischemie myocardium induces apoptosis. Free Radie Biol Med 1998; 24: 869–875.

    Article  CAS  Google Scholar 

  15. Maulik N, Kagan VE, Tyurin VA, Das DK. Redistribution of phosphatidylethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. Am J Physiol 1998; 274: H242–H248.

    PubMed  CAS  Google Scholar 

  16. Veinot JP, Gattinger DA, Fliss H. Early apoptosis in human myocardial infarction. Hum Pathol 1997;28:485–492.

    Article  PubMed  CAS  Google Scholar 

  17. Saraste A, Pulkki K, Kallajoki M, Hendriksen K, Parvinen M, Voipio-Puikki LM. Apoptosis in human acute myocardial infarction. Circulation 1997; 95: 320–323.

    PubMed  CAS  Google Scholar 

  18. Dzau VJ, Gibbons GH, Mann M, Braun-Dullaeus R. Future horizons in cardiovascular molecular therapeutics. Am J Cardiol 1997; 80: 331–391.

    Article  Google Scholar 

  19. Haunstetter A, Izumo S. Apoptosis. Basic mechanisms and implications for cardiovascular disease. Circ Res 1998; 82: 1111–1129.

    PubMed  CAS  Google Scholar 

  20. Bardales RH, Hailey LS, Xie SS, Schaefer RF, Hsu SM. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 1996; 149: 821–829.

    PubMed  CAS  Google Scholar 

  21. Bing RJ, Suzuki H. Myocardial infarction and nitric oxide. Mol Cell Biochem 1997; 160–161: 303–306.

    Google Scholar 

  22. Karwatowska-Prokopczuk JA, Nordberg JA, Li HL, Engler RL, Gottlieb RA. Effect of vacuolar proteon ATPases on pHi, Ca2+, and apoptosis in neonatal cardiomyocytes during metabolic inhibition/recovery. Circ Res 1998; 82: 1139–1144.

    PubMed  CAS  Google Scholar 

  23. Yin T, Sandhu G, Wolfgang CD, Burner A, Webb RL, Rigel DF, Hai T, Whelan J. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 1997; 272: 19943–19950.

    Article  PubMed  CAS  Google Scholar 

  24. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansy SR. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol 1997; 151:1257–1263.

    PubMed  CAS  Google Scholar 

  25. Kloner RA. Does reperfusion injury exist in humans ? J Am Coll Cardiol 1993; 21: 537–545.

    PubMed  CAS  Google Scholar 

  26. Sigel AV, Romanic AM, Peng CF, Schunkert H, Feuerstein G, Riegger GAJ and Yue TL. Hypoxia and reoxygenation related injuries in cardiac myocytes are enhanced by programmed cell death: Differential protective effects of beta-adrenergic receptor blockers. Circulation 1998; 19: 742A.

    Google Scholar 

  27. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997; 81: 137–144.

    PubMed  CAS  Google Scholar 

  28. Ferrari R, Agnoletti L, Comini L, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998; 19Suppl B: B2–BU.

    PubMed  CAS  Google Scholar 

  29. Turner MJ, Evermann DB, Ellington SP, Fields CE. Detection of free radicals during the cellular metabolism of adriamycin. Free Radie Biol Med 1990; 9: 415–421.

    Article  CAS  Google Scholar 

  30. Plaza V, Prat J, Rosello J, Ballester E, Ramis I, Mullol J, Gelpi E, Vives-Corrons JL, Picado C. In vitro release of arachidonic acid metabolites, glutathione peroxidase, and oxygen-free radicals from platelets of asthmatic patients with and without aspirin intolerance. Thorax 1995; 50: 490–496.

    PubMed  CAS  Google Scholar 

  31. McCord JM. Superoxide radical: controversies, contradiction, and paradoxes. Proc Soc Exp Biol Med 1995; 209: 112–117.

    PubMed  CAS  Google Scholar 

  32. Hiraishi H, Terano A, Ota S, Mutoh H, Sugimoto T, Harada T, Razandi M, Ivey KJ. Protection of cultured rat gastric cells against oxidant-induced damage by exogenous glutathione. Gastroenterology 1194; 106: 1199–1207.

    Google Scholar 

  33. Gross GJ. Do ATP-sensitive potassium channels play a role in myocardial stunning ? Basic Res Cardiol 1995; 90: 266–268.

    Article  PubMed  CAS  Google Scholar 

  34. Priori SG, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy J, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management. Circulation 1999; 99: 674–681.

    PubMed  CAS  Google Scholar 

  35. Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR. Synthetic combined Superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemie brain injury. J Pharmacol Exp Ther 1998;284:215–221.

    PubMed  CAS  Google Scholar 

  36. Horwitz LD, Wallner JS, Decker DE, Buxser SE. Efficiacy of lipid soluble, membrane-protective agents against hydrogen peroxide cytotoxicity in cardiac myocytes. Free Radie Biol Med 1996; 21:743–753.

    Article  CAS  Google Scholar 

  37. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol 1994; 73: 2B–7B.

    Article  PubMed  CAS  Google Scholar 

  38. Kashima K, Yokayama S, Daa T, Nakayama I, Iwaki T. Immunohistochemical study on tissue transglutaminase and copper-zinc Superoxide dismutase in human myocardium: its relevance to apoptosis detected by the nick end labelling method. Virchows Arch 1997; 430: 333–338.

    Article  PubMed  CAS  Google Scholar 

  39. Hazzalin CA, Cuenda A, Cano E, Cohen P, Mahadevan LC. Effects of the inhibition of p38/RK MAP kinase on induction of five fos and jun genes by diverse stimuli. Oncogene 1997; 15: 2321–2331.

    Article  PubMed  CAS  Google Scholar 

  40. Yamazaki T, Komuro I, Yazaki Y. Signalling pathways for cardiac hypertrophy. Cell Signal 1998; 10:693–698.

    Article  PubMed  CAS  Google Scholar 

  41. Rozakis-Adcock M, van der Geer P, Mbamalu G, Pawson T. MAP kinase phosphorylation of mSosl promotes dissociation of mSosl-Shc and mSosl-EGF receptor complexes. Oncogene 1995;11: 1417–1426.

    PubMed  CAS  Google Scholar 

  42. Marrero MB, Schieffer R, Li B, Sun J, Harp JB, Ling BN. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin 11-and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 1997; 272: 24684–24690.

    Article  PubMed  CAS  Google Scholar 

  43. Force T, Pombo CM, Avruch JA, Bon ventre JV, Kyriakis JM. Stress-activated protein kinases in cardiovascular disease. Circ Res 1996; 78: 947–953.

    PubMed  CAS  Google Scholar 

  44. Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB 1996; 10: 631–636.

    CAS  Google Scholar 

  45. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997; 100: 1991–1999.

    PubMed  CAS  Google Scholar 

  46. Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go? J Mol Cell Cardiol 1991; 23: 1077–1086.

    Article  PubMed  CAS  Google Scholar 

  47. Chen SJ, Bradley ME, Lee TC. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: modulation by calcium-regulated proteases and protein kinases. Mol Cell Biochem 1998; 178: 141–149.

    Article  PubMed  CAS  Google Scholar 

  48. Li WG, Zaheer A, Coppey L, Oskarsson HJ. Activation of JNK in the remote myocardium after large myocardial infarction in rats. Biochem Biophys Res Commun 1998; 246: 816–820.

    Article  PubMed  CAS  Google Scholar 

  49. Hayashi M, Yoshida T, Monkawa T, Yamaji Y, Sato S, Saruta T. Na+/H+-exchanger-3 activity and its gene in the sponaneously hypertensive rat kidney. J Hypertens 1997; 15: 43–48.

    PubMed  CAS  Google Scholar 

  50. Chakrabarti S, Hoque AN, Karmazyn M. A rapid ischemia-induced apoptosis in isolated rat hearts and its attenuation by the sodium-hydrogen exchanger inhibitor HOE 642 (cariprotide). J Mol Cell Cardiol 1997; 29: 3169–3174.

    Article  PubMed  CAS  Google Scholar 

  51. Senju S, Negishi I, Motoyama N, Wang F, Nakayama KI, Nakayama K, Lucas PJ, Hatakeyama S, Zhang Q, Yonehara S, Loh DY. Functional significance of the Fas molecule in native lymphocytes. Int Immunol 1996; 8: 423–431.

    Article  PubMed  CAS  Google Scholar 

  52. Nishigaki K, Minatoguchi S, Seishima M, Asano K, Noda T, Yasuda N, Sano H, Kumada H, Takemura H, Noma A, Tanaka T, Watanabe S, Fujiwara H. Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis in patients with chronic congestive heart failure. J Am Coll Cardiol 1997; 29: 1214–1220.

    Article  PubMed  CAS  Google Scholar 

  53. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94: 1506–1512.

    PubMed  CAS  Google Scholar 

  54. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats, Exp Cell Res 1996; 22: 316–327.

    Article  Google Scholar 

  55. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100: 1363–1372.

    PubMed  CAS  Google Scholar 

  56. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997; 22: 299–306.

    Article  PubMed  CAS  Google Scholar 

  57. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  58. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by acaspase inhibitor. Circulation 1998; 97: 276–281.

    PubMed  CAS  Google Scholar 

  59. Yue TL, Wang C, Romanic AM, Kikly K, Keller P, De Wolf WE Jr, Hart TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ. Staurosporine-induced apoptosis in cardiomyocytes: a potential role of caspase-3, J Mol Cell Cardiol 1998; 30: 495–507.

    Article  PubMed  CAS  Google Scholar 

  60. Engelmann GL, Dionne CA, Jaye MC. Acidic fibroblast growth factor and heart development. Role in myocyte proliferation and capillary angiogenesis. Circ Res 1993; 72: 7–19.

    PubMed  CAS  Google Scholar 

  61. Basilico C, Ambrosetti D, Fraidenraich D, Dailey L. Regulatory mechanisms governing FGF-4 gene expression during mouse development. J Cell Physiol 1997; 173: 227–232.

    Article  PubMed  CAS  Google Scholar 

  62. Cuevas P, Reimers D, Carceller F, Martinez-Coso V, Redondo-Horcajo M, Saenz-de-Tejada I, Gimenez-Gallego G. Fibroblast growth factor 1 prevents myocardial apoptosis triggered by ischemia reperfusion injury. Eur J Med Res 1997; 2: 465–468.

    PubMed  CAS  Google Scholar 

  63. Suzuki H, Wildhirt SM, Dudek RR, Narayan KS, Bailey AH, Bing RJ. Induction of apoptosis in myocardial infarction and its possible relationship to nitric oxide synthase in macrophages. Tissue Cell 1997; 89–97.

    Google Scholar 

  64. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998; 274: R577–R595.

    PubMed  CAS  Google Scholar 

  65. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. Tumo necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac death. J Clin Invest 1996; 98: 2854–2865.

    PubMed  CAS  Google Scholar 

  66. Ferrari R, Ferrari F, Benigno M, Pepi P, Visioli O. Hibernating myocardium: its pathophysiology and clinical role. Mol Cell Biochem 1998; 186: 195–199.

    Article  PubMed  CAS  Google Scholar 

  67. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD, Strasser R, Kostin S, Gagel C, Munkel B, Schaper W, Schaper J. Hibernating myocardium: an incomplete adaption to ischemia. Circulation 1997; 96: 2920–2931.

    PubMed  CAS  Google Scholar 

  68. Gil VM, Hibernating myocardium. An incomplete adaption to ischemia. Rev Port Cardiol 1998; 17:293–294.

    PubMed  CAS  Google Scholar 

  69. Chen C, Ma L, Linfert DR, Lai T, Fallon JT, Gillam LD, Waters DD, Tsongalia GJ. Myocardial cell death and apoptosis in hibernating myocardium. J Am Coll Cardiol 1997; 30: 1407–1412.

    Article  PubMed  CAS  Google Scholar 

  70. Wildhirt SM, Dudek RR, Suzuki H, Bing RJ. Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 1995; 50: 253–261.

    Article  PubMed  CAS  Google Scholar 

  71. Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 1998; 97: 2259–2267.

    PubMed  CAS  Google Scholar 

  72. Liu L, Azhar G, Gao W, Zhang X. Bcl-2 and Bax expression in adult rats after coronary occlusion: age associated differences. Am J Physiol 1998, 275: R315–R322.

    PubMed  CAS  Google Scholar 

  73. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor 1 in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 1995; 92: 8031–8035.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sigel, A.V., Riegger, G.A.J. (2000). Apoptosis in myocardial infarction. In: Schunkert, H., Riegger, G.A.J. (eds) Apoptosis in Cardiac Biology. Basic Science for the Cardiologist, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-38143-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-38143-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8648-3

  • Online ISBN: 978-0-585-38143-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics