Apoptosis in human atherosclerosis

  • Gerhard Bauriedel
  • Randolph Hutter
  • Ulrich Welsch
  • Berndt Lüderitz
Part of the Basic Science for the Cardiologist book series (BASC, volume 5)


A better understanding and more effective treatment of acute coronary syndrome and postangioplasty restenosis remain major issues in clinical cardiology. As for acute coronary syndromes, from the pathobiologic perspective, instability of coronary atheroma (e.g. plaque rupture), and subsequent thrombosis may result in myocardial infarction and death, as well as the progression of the arteriosclerotic disease. The underlying factors and mechanisms causing plaque rupture are not completely understood. Recent investigational work on human vulnerable lesions shows a low density of smooth muscle cells (SMCs) and collagen as well as an increased frequency of inflammatory cells, associated with a considerable tissue degrading activity, to be basically implicated in the breakdown of the plaque fibrous cap (1–8). Indeed, elimination of SMCs via apoptosis (programmed cell death) may contribute to a weakened plaque texture and to a reduced production and deposition of extracellular matrix proteins, both leading to plaque instability.


Unstable Angina Apoptotic Body Plaque Rupture Matrix Vesicle Human Vascular Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies MJ. Stability and instability: Two faces of coronary atherosclerosis. Circulation 1996;94:2013–20.PubMedGoogle Scholar
  2. 2.
    Libby P. Molecular bases of acute coronary syndromes. Circulation 1995;91:2844-50.Google Scholar
  3. 3.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndroms-implications for plaque rupture. Circulation 1994;90:775–78.PubMedGoogle Scholar
  4. 4.
    Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques-potential role of matrix degrading metalloproteinases and implications for plaque rupture. Circulation 1995;92:1565–69.PubMedGoogle Scholar
  5. 5.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.PubMedGoogle Scholar
  6. 6.
    Kovanen PT, Kaartinen M, Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995;92:1084–88.PubMedGoogle Scholar
  7. 7.
    Arbustini E, De Servi S, Bramucci E, Porcu E, Costante AM, Grasso M, Diegoli M, Fasani R, Morbini P, Angoli L, Boscarini M, Repetto S, Danzi G, Niccoli L, Campolo L, Lucreziotti S, Specchia G. Comparison of coronary lesions obtained by directional coronary atherectomy in unstable angina, stable angina and restenosis after either atherectomy or angioplasty. Am J Cardiol 1995;75:675–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Van der Wal AC, Becker AE, V d Loos CM, Das PK. Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.PubMedGoogle Scholar
  9. 9.
    Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994;330:1431–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury. Circulation 1996;93:1716–24.PubMedGoogle Scholar
  11. 11.
    Gertz SD, Banai S, Perez LS, Gimple LW, Ragosta M, Powers ER, Sarembock IJ, Roberts WC. Remodeling after PTCA: from shrinkage to compensatory enlargement. Circulation 1995;91:2002–03.Google Scholar
  12. 12.
    Gordon PC, Gibson CM, Cohen DJ, Carrozza JP, Kuntz RE, Bairn DS. Mechanisms of restenosis and redilation within coronary stents-quantitative angiographic assessment. J Am Coll Cardiol 1993;21:1166–74.PubMedGoogle Scholar
  13. 13.
    Kuntz RE, Bairn DS. Defining coronary restenosis-newer clinical and angiographic paradigms. Circulation 1993;88:1310–23.PubMedGoogle Scholar
  14. 14.
    Mintz GS, Pichard AD, Kent KM, Satler LF, Popma JJ, Leon MB. Intravascular ultrasound comparison of restenotic and de novo coronary artery narrowings. Am J Cardiol1994;74:1278–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Nishioka T, Luo H, Eigler NL, Berglund H, Kim CJ, Siegel RJ. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: An in vivo intravascular ultrasound study. J Am Coll Cardiol 1996;27:1571–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Pasterkamp G, Wensing PJW, Post MJ, Hillen B, Mali WP, Borst C. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation 1995;91:1444–49.PubMedGoogle Scholar
  17. 17.
    Post MJ, Kuntz RE, Borst C. Remodeling after PTCA: From shrinkage to compensatory enlargement. Circulation 1995;91:2002Google Scholar
  18. 18.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993;362:801–09.PubMedCrossRefGoogle Scholar
  19. 19.
    Kockx MM, De Meyer GR, Bortier H, de Meyere N, Muhring J, Bakker A, Jacob W, v Vaeck L, Herman AG. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation 1996;94:1255–62.PubMedGoogle Scholar
  20. 20.
    Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-lβ-converting enzyme. Am J Pathol 1995;147:251–66.PubMedGoogle Scholar
  21. 21.
    Han DKM, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995; 47:267–77.Google Scholar
  22. 22.
    Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998;97:2307–15.PubMedGoogle Scholar
  23. 23.
    Bauriedel G, Schluckebier S, Hutter R, Welsch U, Kandolf R, Lüderitz B, Forney Prescott M. Apoptosis in restenosis versus stable angina atherosclerosis. Implications for the pathogenesis of restenosis. Arterioscler Thromb Vasc Biol 1998;18:1132–39.PubMedGoogle Scholar
  24. 24.
    Austin GE, Ratliff NB, Hollman J, Tabei S, Phillips DF. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985;6:369–75.PubMedGoogle Scholar
  25. 25.
    Bauriedel G, Kandolf R, Welsch U, Höfling B. Mechanismen der Re-Stenosierung nach Angioplastie. Z Kardiol 1994;83(suppl 4):31–41.PubMedGoogle Scholar
  26. 26.
    Bauriedel G, Kandolf R, Schluckebier S, Welsch U. Ultrastructural characteristics of human atherectomy tissue from coronary and lower extremity arterial stenoses. Am J Cardiol 1996;77:468–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest 1993;91:1469–80.PubMedGoogle Scholar
  28. 28.
    Thyberg J, Hedin U, Sjölund M, Palmberg L, Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10:966–90.PubMedGoogle Scholar
  29. 29.
    Bauriedel G, Heidemann P, Heimerl J, Kandolf R, Höfling B. Detection of PDGF mRNA in human restenotic plaque tissue by in situ hybridization: Implication for novel therapeutic approaches. J Am Coll Cardiol 1994;23:124A.Google Scholar
  30. 30.
    Flugelman MY, Virmani R, Correa R, Yu ZX, Farb A, Leon MB, Elami A, Fu YM, Casscells W, Epstein SE. Smooth muscle cell abundance and fibroblast growth factor in coronary lesions with nonfatal unstable angina. Circulation 1993;88:2493–2500.PubMedGoogle Scholar
  31. 31.
    Isner JM. Vascular remodeling. Circulation 1994;89:2937–41.PubMedGoogle Scholar
  32. 32.
    Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995;91:2703–11.PubMedGoogle Scholar
  33. 33.
    O’Brien ER, Alpers CE, Stewart DK, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson JB, Schwartz SM. Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res 1993;73:223–31.PubMedGoogle Scholar
  34. 34.
    Kerr IFR, Harmon BV. “Definition and Incidence of Apoptosis: An Historical Perspective.” In Apoptosis: The Molecular Basis of Cell Death, ed. Tomei LD and Cope FO: New York, Cold Springs Harbor Laboratory Press, pp 5–29, 1991.Google Scholar
  35. 35.
    Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 1994;73:2013–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146:3–15.PubMedGoogle Scholar
  37. 37.
    Wyllie AH, Kerr JFR, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68:251–306.PubMedGoogle Scholar
  38. 38.
    Bauriedel G, Schluckebier S, Welsch U, Höfling B, Kandolf B. Evidence of apoptosis in human arteriosclerosis. Circulation 1995;92:1–500.Google Scholar
  39. 39.
    Wijsman JH, Jonker RR, Kreijzer R, DeVelde CJH, Cornelisse CJ, v Dierendonck JH. A new method to detect apoptosis in paraffin sections: In situ end-labeling of fragmented DNA. J Histochem Cytochem 1993;41:7–12.PubMedGoogle Scholar
  40. 40.
    Savill J. Apoptosis in disease. Eur J Clin Invest 1994;24:715–23.PubMedGoogle Scholar
  41. 41.
    Kockx MM, Muhring J, Bottier H, De Meyer GR, Jacob W. Biotin-or digoxigenin-conjugated nucleotides bind to matrix vesicles in atherosclerotic plaques. Am J Pathol 1996;148:1771–77.PubMedGoogle Scholar
  42. 42.
    Gordon D, Reidy M, Benditt EP, Schwartz S. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 1990;87:4600–06.PubMedCrossRefGoogle Scholar
  43. 43.
    Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994;77:477–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Brandi R, Richter T, Haug K, Wilhelm MG, Maurer PC, Nathrath W. Topographic analysis of proliferative activity in carotid andarterectomy specimens by immunocytochemical detection of the cell cycle-related antigen Ki-67. Circulation 1997;96:3360–68.Google Scholar
  45. 45.
    Savill J, Dransfield I, Hogg N, Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 1990;343:170–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Savill J, Fadok V, Henson P, Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today 1993;14:582–90.CrossRefGoogle Scholar
  47. 47.
    Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Bennett MR, Gibson DF, Schwartz SM, Tait JF. Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ Res 1995;77:1136–42.PubMedGoogle Scholar
  49. 49.
    Bauriedei G, Windstetter U, DeMaio SJ, Kandolf R, Höfling B. Migratory activity of human smooth muscle cells cultivated from coronary and peripheral primary and restenotic lesions removed by percutaneous atherectomy. Circulation 1992;85:554–64.Google Scholar
  50. 50.
    Dartsch P, Voisard R, Bauriedel G, Höfling B, Betz E. Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions. Arteriosclerosis 1990;10:62–75.PubMedGoogle Scholar
  51. 51.
    Bennett MR, Evan GI, Newby AC. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-γ, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res 1994;74:525–36.PubMedGoogle Scholar
  52. 52.
    Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995;95:2266–74.PubMedGoogle Scholar
  53. 53.
    Cohen JJ. Apoptosis. Immunol Today 1993;14:126–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of a 92-kD gelatinase in human coronary atherosclerotic lesions-association of active enzyme synthesis with unstable angina. Circulation 1995;91:2125–31.PubMedGoogle Scholar
  55. 55.
    Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wickline SA, Parks WC. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 1996;93:9748–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Henney AM, Wakely PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 1991;88:8154–58.PubMedCrossRefGoogle Scholar
  57. 57.
    Bennett MR, Evan Gl, Schwartz SM. Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and-independent pathways. Circ Res 1995;77:266–73.PubMedGoogle Scholar
  58. 58.
    Bennett MR, Macdonald K, Chan SW, Boyle JJ, Weissberg PL. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res 1998;82:704–12.PubMedGoogle Scholar
  59. 59.
    Cai WJ, Devaux B, Schaper W, Schaper J. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997;131:177–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Jacobson MD, Bume J, Raff MC. Programmed cell death and bcl-2 protection in the absence of a nucleus. EMBO J 1994;13:1899–1910.PubMedGoogle Scholar
  61. 61.
    Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nature Medicine 1998;4:222–27.PubMedCrossRefGoogle Scholar
  62. 62.
    Schwartz SM, Bennett MR. Death by any other name. Am J Pathol 1995;147:229–34.PubMedGoogle Scholar
  63. 63.
    Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-γ, tumor necrosis factor-α, and interleukin-lβ. Arterioscler Thromb Vasc Biol 1996;16:19–27.PubMedGoogle Scholar
  64. 64.
    Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995;146:56–66.PubMedGoogle Scholar
  65. 65.
    Meßmer UK, Ankarerona M, Nicotera P, Brüne B. p53 expression in nitric oxide-induced apoptosis. FEBS Letters 1994;355:23–26.PubMedCrossRefGoogle Scholar
  66. 66.
    Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, v Dyke T. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994;78:703–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Condado JA, Waksman R, Gurdiel O, Espinosa R, Gonzalez J, Burger B, Villoria G, Acquatetla H, Crocker IR, Seung KB, Liprie SF. Long-term angiographie and clinical outcome after percutaneous transluminai coronary angioplasty and intracoronary radiation therapy in humans. Circulation 1997;96:727–32.PubMedGoogle Scholar
  68. 68.
    Teirstein PS, Massullo V, Jani S, Popma JJ, Mintz GS, Russo RJ, Schatz RA, Guarneri EM, Steuterman S, Morris NB, Leon MB, Tripuraneni P. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med. 1997;336:1697–1703.PubMedCrossRefGoogle Scholar
  69. 69.
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Hehrlein C, Gollan C, Dönges K, Metz J, Riessen R, Fehsenfeid P, v Hodenberg E, Kübier W. Low dose radioactive stents inhibit smooth muscle cell proliferation and neointimal thickening in rabbits. Circulation 1995;92:1570–75.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gerhard Bauriedel
    • 1
    • 2
  • Randolph Hutter
    • 1
    • 2
  • Ulrich Welsch
    • 1
    • 2
  • Berndt Lüderitz
    • 1
    • 2
  1. 1.Universität BonnBonnGermany
  2. 2.Universität MünchenMünchenGermany

Personalised recommendations