Advertisement

Regulation of Inflammation by Fas Ligand Expression on the Vascular Endothelium

  • Kenneth Walsh
  • Masataka Sata
Part of the Basic Science for the Cardiologist book series (BASC, volume 2)

Abstract

The monolayer of endothelial cells that coat the luminal surface of the vessel wall have numerous physiological functions including the prevention of coagulation, control of vascular permeability, maintenance of vascular tone, and regulation of leukocyte extravasation. While the vascular endothelium plays a pivotal role in recruiting inflammatory cells at the site of infection or wounding, the normal endothelium is believed to serve as a barrier to inflammation in the absence of inflammatory stimuli.

Keywords

Vascular Smooth Muscle Cell Proliferation Subendothelial Space Leukocyte Extravasation Molecular Cardiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagata S, Golstein P. The Fas death factor. Science 1995;267:1449–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of Mach, a novel MORTl/FADD-interacting protease, in FAS/Apo-1 and TNF receptor-induced cell death. Cell 1996;85:803–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Muzio M, Chinnaiyan AM, Kischkel FC, O’Rouke K, Schevchenko A, Ni J, Scaffidi CC, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. FLICE, a novel, FADD-homologous ICE/CED-3-like protease is recruited to the CD95 (Fas/APOl) death-inducing signaling complex. Cell 1996;85:817–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Li H, Zhu H, Xu C-J, Yuan J. Cleavage of BID by caspase8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391:43–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer J-L, Schroter M, Burns K, Mattmann C, Rimoldi D, French L, Tschopp J. Inhibition of death receptor signals by cellular FLIP Nature 1997;388:190–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1 and CD-95-induced apoptosis J Biol Chem 1997;272:17255–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Srinivasula SM, Ahmad M, Otilie S, Bullrich F, Banks S, Fernandes-Alnemri T, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES. FLAME-1, a novel FADD-like anti-apoptotic molecules that regulates Fas/TNFRl-induced apoptosis J Biol Chem 1997;272:18542–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis Immunity 1998;8:615–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege Science 1995;270:1189–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role of CD95 ligand in preventing graft rejection Nature 1995;377:630–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J-C, Tschopp J. Melanoma cell expression of Fas (Apo-1/CD95) ligand: Implications for tumor immune escape. Science 1996;274:1363–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Strand S, Hofman WJ, Hug H, Müller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand expressing tumor cells-A mechanism of immune evasion? Nature Med 1996, 2:1361–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Green DR, Kratzke RA. Human lung carcinomas express Fas ligand Cancer Res 1997;57:1007–12.Google Scholar
  16. 16.
    Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration Ann Rev Physiol 1995;57:827–72.CrossRefGoogle Scholar
  17. 17.
    Luscinskas FW, Gimbrone MAJ. Endothelial-dependent mechanism in chronic inflammatory leukocyte recruitment Ann Rev Med 1996;47:413–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s Nature 1993;362:801–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Sata M, Walsh K. TNFα Regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation Nature Med 1998;4:415–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993;75:1169–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S. Expression of the Fas ligand in T cell lineage J Immunol 1995;154:3806–13.PubMedGoogle Scholar
  22. 22.
    Richardson BC, Lalwani ND, Johnson KJ, Marks RM. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol 1994;24:2640–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Rodriguez I, Matsuura K, Khatib K, Reed JC, Nagata S, Vassalli P. A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection J Exp Med 1996;183:1031–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med 1996;2:80–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Itoh N, Tsujimoto Y, Nagata S. Effect of bcl-2 on Fas antigen-mediated cell death J Immunol 1993;151:621–7.PubMedGoogle Scholar
  26. 26.
    Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S. Bcl-2 and Fas/APO-1 regulates distinct pathways to lymphocyte apoptosis EMBO J 1995;14:6136–47.PubMedGoogle Scholar
  27. 27.
    Sata M, Walsh K. Endothelial cell apoptosis induced by oxidized LDL is associated with the downregulation of the cellular caspase inhibitor FLIP. J Biol Chem 1998;In press.Google Scholar
  28. 28.
    Sata M, Perlman H, Muruve DA, Silver M, Ikebe M, Libermann TA, Oettgen P, Walsh K. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sei USA 1998;95:1213–7.CrossRefGoogle Scholar
  29. 29.
    Geng Y-J, Henderson LE, Levesque EB, Muszynzki M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vase Biol 1997;17:2200–8.Google Scholar
  30. 30.
    Tanaka M, Itai T, Adachi M, Nagata S. Downregulation of Fas ligand by shedding. Nature Med 1998;4:31–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 1997;186:2045–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Wick G, Schert G, Amberger R, Kleindienst R, Xu Q. Is atherosclerosis an immunologically mediated disease? Immunol Today 1995;16:27–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque Arteriosclerosis 1986;6:131–8.PubMedGoogle Scholar
  34. 34.
    Munro JM, van der Walt JD, Munro CS, Chalmers JAC, Cox E. An immunohistochemical analysis of human aortic fatty streaks Hum Path 1987;18:375–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Emeson EE, Robertson AL. T lymphocytes in aortic and coronary intimas: their potential role in atherogenesis. Am J Pathol 1988;130:369–76.PubMedGoogle Scholar
  36. 36.
    van der Wal AC, Das PK, van de Berg DB, van der Loos CM, Becker AE. Atherosclerotic lesions in human: in situ immunophenotypic analysis suggesting an immune mediated response Lab Invest 1989;61:166–70.PubMedGoogle Scholar
  37. 37.
    Tanaka H, Swanson SJ, Sukhova G, Schoen FJ, Libby P. Smooth muscle cells of the coronary arterial tunica media express tumor necrosis factor-α and proliferate during acute rejection of rabbit cardiac allografts. Am J Pathol 1995;147:617–26.PubMedGoogle Scholar
  38. 38.
    Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions Lab Invest 1991;64:5–15.PubMedGoogle Scholar
  39. 39.
    Billingham ME. Cardiac transplant atherosclerosis Transplantation Proceedings 1987;19:19–25.PubMedGoogle Scholar
  40. 40.
    Ross R. Genetically modified mice as models of transplant atherosclerosis Nature Med 1996;2:527–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Clausell N, Milossi S, Sett S, Rabinovitch M. In vivo blockade of tumor necrosis factor-α in cholesterol-fed rabbits after cardiac transplant inhibits acute coronary artery neointimal formation. Circulation 1994;89:2768–79.PubMedGoogle Scholar
  42. 42.
    Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque Am J Pathol 1989;135:169–75.PubMedGoogle Scholar
  43. 43.
    Sata M, Walsh K. The Fas/Fas ligand pathway mediates vascular endothelial cell apoptosis induced by oxidized LDL J Clin Invest 1998;(in press).Google Scholar
  44. 44.
    McBride W, Lange RA, Hillis LD. Restenosis after successful coronary angioplasty: pathophysiology and prevention. N Engl J Med 1988;318:1734–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Nobuyoshi M, Kimura T, Nosaka H, Mioka S, Ueno K, Yokoi H, Hamasaki N, Hriuchi H, Ohishi H. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographie follow-up of 229 patients. J Am Coll Cardiol 1988;12:616–23.PubMedGoogle Scholar
  46. 46.
    Moreno PR, Bernardi VB, Lopez-Cuellar J, Newell JB, McMellon C, Gold HK, Palacios IF, Fuster V, Fallon JT. Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina Circulation 1996;94:3098–102.PubMedGoogle Scholar
  47. 47.
    Nobuyoshi M, Kimura T, Ohishi H, Horiuchi H, Nosaka H, Hamasaki N, Yokoi H, Kim K. Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J Am Coll Cardiol 1991;17:433–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Kearney M, Pieczek A, Haley L, Losordo DW, Andres V, Schainfeld R, Rosenfield K, Isner JM. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation 1997;95:1998–2002.PubMedGoogle Scholar
  49. 49.
    Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia J Am Coll Cardiol 1998;31:224–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ, Nabel EG. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994;265:781–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Guzman RJ, Hirschowitz EA, Brody SL, Crystal RG, Epstein SE, Finkel T. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 1994;91:10732–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang MW, Barr E, Seltzer J, Jiang Y, Nabel GJ, Nabel EG, Parmacek MS, Leiden JM. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995;267:518–22.PubMedCrossRefGoogle Scholar
  53. 53.
    French BA, et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation 1994;90:2402–13.PubMedGoogle Scholar
  54. 54.
    Dai Y, Schwarz EM, Gu D, Zhang W-W, Sarvetnick N, Verma IM. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995;92:1401–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang MW, Barr E, Lu MM, Barton K, Leiden JM. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995;96:2260–8.PubMedGoogle Scholar
  56. 56.
    Smith RC, Branellec D, Gorski DH, Guo K, Perlman H, Dedieu J-F, Pastore C, Mahfoudi A, Denèfle P, Isner JM, Walsh K. p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev 1997;11:1674–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994;91:4407–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Risau W. Mechanisms of angiogenesis Nature 1997;386:671–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Folkman J. Clinical-applications of research on angiogenesis N Engl J Med 1995;333:1757–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb J Clin Invest 1998;101:40–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M. Peripheral blood T lymphcytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis Cancer Res 1995;55:4140–5.PubMedGoogle Scholar
  62. 62.
    Polverini PJ, Cortran RA, Gimbrone MAJ, Unanue ER. Activated macrophages induce vascular proliferation Nature 1977;269:804–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Risau W. Angiogenesis is coming of age Circ Res 1998;82:926–8.PubMedGoogle Scholar
  64. 64.
    Frater-Schroder MW, Risau R, Hallmann P, Gautschi P, Bohlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo Proc Natl Acad Sci USA 1987;84:5277–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Rupia E, Montrucchio G, Battaglia E, Modena V, Camussi G. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis Eur J Immunol 1996;26.:1690–4.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kenneth Walsh
    • 1
  • Masataka Sata
    • 1
  1. 1.Tufts University and St. Elizabeth’s Medical CenterUSA

Personalised recommendations