Factors Involved In The Cell Cycle Arrest Of Adult Rat Cardiomyocytes

Possibilities for the reactivation of the cardiomyocy te proliferation in cell culture
Part of the Cell Engineering book series (CEEN, volume 1)


The mammalian heart consists of two pumps called the left and right ventricles. The left ventricle has to work harder as it must force the blood around the body. Therefore, it is more likely to fail despite the fact that it has more muscle. O2 carried by the blood is essential to maintain life. If the left ventricle weakens, the body suffers from O2 deficit. A failing left ventricle will also fail to keep pace with the right ventricle, which is feeding the lungs, thus causing pulmonary blood congestion. If the right ventricle weakens, it will fail to propel enough blood through the lungs to exchange O2 to meet the needs of the rest of the body. There are four major types of cardiovascular diseases — hypertension, atherosclerosis, ischemic heart disease and thrombosis — which account for most cases where the circulatory system goes wrong. Approximately 400,000 new cases of heart failure are registered in the US each year, summing up to four to five million people (Gheorghiade and Bonow, 1998). Heart attacks may lead to death or debilitation and the risk dying thereafter is considerably increased. (Cowie et al., 1997; Gheorghiade and Bonow, 1998; Sharpe and Doughty, 1998). Survivors suffer severe damage to heart muscle tissue that cannot regenerate. Frequently, the heart reacts to an increase in load caused by disease with a growth of the muscle tissue (hypertrophy) to compensate for pathological haemodynamics. This hypertrophy is solely based on an increase of the cardiac muscle cell size. Despite the facts that during the last 50 years much progress has been made in the recognition of cardiologie risk factors, in diagnosis and therapy of cardiovascular disorders, only little is known about the molecular and cellular fundamentals of these diseases.


Cell Cycle Arrest Proliferate Cell Nuclear Antigen Adult Cardiomyocytes Cardiomyocyte Proliferation Heavy Chain Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axton, J. M., Dombràdi, V., Cohen, P. T. W., and Glover, D. M. (1990). One of the protein phosphatase 1 isoenzymes in Drosphila is essential for mitosis. Cell 63, 33–46.Google Scholar
  2. Balasubramanian, M. K., McCollum, D., Chang, L., Wong, K. C, Naqvi, N. I., He, X., Sazer, S., and Gould, K. L. (1998). Isolation and characterization of new fission yeast cytokinesis mutants. Genetics 149, 1265–1275.PubMedGoogle Scholar
  3. Behringer, R. R., Peschon, J. J., Messing, A., Gartside, C. L., Hauschka, S. D., Palmiter, R. D., and Brinster, R. L. (1988). Heart and bone tumors in transgenic mice. Proc. Natl. Acad. Sei. USA 85, 2648–2652.CrossRefGoogle Scholar
  4. Bishopric, N. H., Zeng, G. Q., Sato, B., and Webster, K. A. (1997). Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J. Biol. Chem. 272, 20584–20594.PubMedCrossRefGoogle Scholar
  5. Brodsky, V., Sarkisov, D. S., Arefyeva, A. M, and Panova, N. W. (1993). DNA and protein relations in cardiomyocytes. Growth reserve in cardiac muscle. Eur. J. Histochem. 37, 199–206.PubMedGoogle Scholar
  6. Brooks, G., Poolman, R. A., McGill, C. J., and Li, J.-M. (1997). Expression and activities of cyclins and cylin-dependent kinases in developing rat ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 2261–2271.PubMedCrossRefGoogle Scholar
  7. Chan, F. K., Zhang, J., Cheng, L., Shapiro, D. N., and Winoto, A. (1995). Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to pl6ink4. Mol. Cell. Biol. 15, 2682–2688.PubMedGoogle Scholar
  8. Chang, T. H., Ray, F. A., Thompson, D. A., and Schlegel, R. (1997). Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14, 2383–93.PubMedCrossRefGoogle Scholar
  9. Cheng, T. O. (1988). Cardiovascular disease in China. Nature Med. 4, 1209–1210.Google Scholar
  10. Clarke, A. R., Maandag, E. R., van Roon, M., van der Lugt, N. M., van der Valk, M., Hooper, M. L., Berns, A., and te Riele, H. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330.PubMedCrossRefGoogle Scholar
  11. Cobrinik, D., Lee, M.-H., Hannon, G., Mulligan, G., Bronson, R. T., Dyson, N., Harlow, E., Beach, D., Weinberg, R. A., and Jacks, T. (1996). Shared role of the pRB-related pl30 and p107 proteins in limb development. Genes Dev. 10, 1633–1644.PubMedCrossRefGoogle Scholar
  12. Cowie, M. R., Mosterd, A., Wood, D. A., Deckers, J. W., Poole Wilson, P. A., Sutton, G. C, and Grobbee, D. E. (1997). The epidemiology of heart failure. Eur. Heart. J. 18, 208–225.PubMedGoogle Scholar
  13. DeGregori, J., Leone, G., Miron, A., Jakoi, L., and Nevins, J. R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sei. USA 94, 7245–7250.CrossRefGoogle Scholar
  14. Deng, C, Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995). Mice lacking p2lCIPl/WAFlundergo normal development, but are defective in Gl checkpoint control. Cell 82, 675–684.PubMedCrossRefGoogle Scholar
  15. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.PubMedCrossRefGoogle Scholar
  16. El-Deiry, W. S., Harper, J. W., O’Connor, P. M., Velculescu, V. E., Canman, C. E., Jackman, J., Pietenpol, J. A., Burrell, M., Hill, D. E., and Wang, Y. (1994). WAF1/CIP1 is induced in p53-mediated Gl arrest and apoptosis. Cancer Res. 54, 1169–1174.PubMedGoogle Scholar
  17. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.PubMedCrossRefGoogle Scholar
  18. Engelmann, G. L., Birchenall-Roberts, M. C, Ruscetti, F. W., and Samarel, A. M. (1993). Formation of fetal rat cardiac cell clones by retroviral transformation: retention of select myocyte characteristics. J. Mol. Cell. Cardiol. 25, 197–213.PubMedCrossRefGoogle Scholar
  19. Eppenberger, H. M., and Zuppinger, C. (1998). In vitro reestablishment of cell-cell contacts in adult rat cardiomyocytes. Functional role of transmembrane components in the formation of new intercalated disc-like contacts. FASEB J. in press.Google Scholar
  20. Eppenberger-Eberhardt, M., Aigner, S., Donath, M. Y., Kurer, V., Walther, P., Zuppinger, C, Schaub, M. C, and Eppenberger, H. M. (1997). IGF-I and bFGF differentially influence atrial natriuretic factor and alpha-smooth muscle actin expression in cultured atrial compared to ventricular adult rat cardiomyocytes. J. Mol. Cell. Cardiol. 29, 2027–2039.PubMedCrossRefGoogle Scholar
  21. Eppenberger-Eberhardt, M., Flamme, I., Kurer, V., and Eppenberger, H. M. (1990). Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev. Biol. 139, 269–278.PubMedCrossRefGoogle Scholar
  22. Ewen, M. E., Xing, Y., Lawrence, J. B., and Livingston, D. M. (1991). Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66, 1155–1164.PubMedCrossRefGoogle Scholar
  23. Fero, M. L., Rivkin, M., Tasch, M., Porter, P., Carow, C. E., Firpo, E., Polyak, K., Tsai, L. H., Broudy, V., Perlmutter, R. M., Kaushansky, K., and Roberts, J. M. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kipl)-deficient mice. Cell 85, 733–44.PubMedCrossRefGoogle Scholar
  24. Flink, I. L., Oana, S., Maitra, N., Bahl, J. J., and Morkin, E. (1998). Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. J. Mol. Cell. Cardiol. 30, 563–578.PubMedCrossRefGoogle Scholar
  25. Flore-Rozas, H., Kelman, Z., Dean, F. B., Pan, Z. Q., Harper, J. W., Elledge, S. J., O’Donnel, M. O., and Hurwitz, J. (1994). Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replications catalysed by the DNA polymerase delta holoenzyme. Proc. Natl. head. Sei. USA 91, 8655–8659.CrossRefGoogle Scholar
  26. Gheorghiade, M., and Bonow, R. O. (1998). Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97, 282–289.PubMedGoogle Scholar
  27. Harder, B. A., Schaub, M. C, Eppenberger, H. M., and Eppenberger-Eberhardt, M. (1996). Influence of fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture. J. Mol. Cell. Cardiol. 28, 19–31.PubMedCrossRefGoogle Scholar
  28. Harlow, E., Whyte, P., Franza, B. R. J., and Schley, C. (1986). Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol. Cell. Biol. 6, 1579–1589.PubMedGoogle Scholar
  29. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993). The p21 Cdk-ineracting protein Cipl is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75, 805–816.PubMedCrossRefGoogle Scholar
  30. Hertig, C. M., Eppenberger-Eberhardt, M., Koch, S., and Eppenberger, H. M. (1996). N-cadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant. J. Cell. Sei. 109, 1–10.Google Scholar
  31. Hess, G. F., Drong, R. F., Weiland, K. L., Slightom, J. L., Sclafani, R. A., and Hollingsworth, R. E. (1998). A human homolog of the yeast CDC7 gene is overexpressed in some tumors and transformed cell lines. Gene 211, 133–140.PubMedCrossRefGoogle Scholar
  32. Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A., and Sherr, C. J. (1995). Novel INK4 proteins, pl9 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 15, 2672–2681.PubMedGoogle Scholar
  33. Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., and Weinberg, R. A. (1992). Effects of an Rb mutation in the mouse. Nature 359, 295–300.PubMedCrossRefGoogle Scholar
  34. Jackson, T., Allard, M. F., Sreenan, C. M, Doss, L. K., Bishop, S. P., and Swain, J. L. (1990). The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol. Cell. Biol. 10, 3709–3716.PubMedGoogle Scholar
  35. Jiang, W., and Hunter, T. (1997). Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc. Natl. Acad. Sei. USA. 94, 14320–14325.CrossRefGoogle Scholar
  36. Jwa, M., and Song, K. (1998). Byr4, a dosage-dependent regulator of cytokinesis in S. pombe, interacts with a possible small GTPase pathway including Spgl and Cdcl6. Mol. Cells 8, 240–245.PubMedGoogle Scholar
  37. Kallio, M, Weinstein, J., Daum, J. R., Burke, D. J., and Gorbsky, G. J. (1998). Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell. Biol. 141, 1393–1406.PubMedCrossRefGoogle Scholar
  38. Kang, M. J., and Koh, G. Y. (1997). Differential and dramatic changes of the cyclin-dependent kinase activities in cardiomyocytes during the neonatal period. J. Mol. Cell. Cardiol. 29, 1767–1777.PubMedCrossRefGoogle Scholar
  39. Katz, E. B., Steinhelper, M. E., Delcarpio, J. B., Daud, A. I., Claycomb, W. C, and Field, L. J. (1992). Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes. Am. J. Physiol. 262, H1867–H1876.PubMedGoogle Scholar
  40. Kim, J. M., Sato, N., Yamada, M., Arai, K., and Masai, H. (1998). Growth regulation of the expression of mouse cDNA and gene encoding a serine/threonine kinase related to Saccharomyces cerevisiae CDC7 essential for Gl/S transition. Structure, chromosomal localization, and expression of mouse gene for s. cerevisiae Cdc7-related kinase. J. Biol. Chem. 273, 23248–23257.PubMedCrossRefGoogle Scholar
  41. Kim, K. K., Soonpaa, M. H., Daud, A. I., Koh, G. Y., Kim, J. S., and Field, L. J. (1994). Tumor suppressor gene expression during normal and pathologic myocardial growth. J. Biol. Chem. 269, 22607–22613.PubMedGoogle Scholar
  42. King, R. W., Jackson, P. K., and Kirschner, M. W. (1994). Mitosis in transition. Cell 79, 563–571.PubMedCrossRefGoogle Scholar
  43. Kinoshita, N., Yamano, H., Niwa, H., Yoshida, T., and Yanagida, M. (1993). Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev. 7, 1059–1071.PubMedCrossRefGoogle Scholar
  44. Kirshenbaum, L. A., Abdellatif, M., Chakraborty, S., and Schneider, M. D. (1996). Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev. Biol. 179, 402–411.PubMedCrossRefGoogle Scholar
  45. Kirshenbaum, L. A., and Schneider, M. D. (1995). Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein-and p300-binding domains. J. Biol. Chem. 270, 7791–7794.PubMedCrossRefGoogle Scholar
  46. Kiyokawa, H., Kineman, R. D., Manova, T. K., Soares, V. C, Hoffman, E. S., Ono, M., Khanam, D., Hayday, A. C, Frohman, L. A., and Koff, A. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kipl). Cell 85, 721–32.PubMedCrossRefGoogle Scholar
  47. Koh, K. N., Kang, M. J., Frith-Terhume, A., Park, S. K., Kim, I., Lee, C. O., and Koh, G. Y. (1998). Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor p27KIP1, in rat hearts during development. J. Mol. Cell. Cardiol. 30, 463–474.PubMedCrossRefGoogle Scholar
  48. Lee, E. Y., Chang, C. Y., Hu, N., Wang, Y. C, Lai, C. C, Herrup, K., Lee, W. H., and Bradley, A. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294.PubMedCrossRefGoogle Scholar
  49. Lee, M.-H., Williams, B. O., Mulligan, G., Mukai, S., Branson, R. T., Dyson, N., Harlow, E., and Jacks, T. (1996). Targeted disruption of pl07: functional overlap between pl07 and Rb. Genes Dev. 10, 1621–1632.PubMedCrossRefGoogle Scholar
  50. Lee, M. H., Reynisdottir, I., and Massague, J. (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649.PubMedCrossRefGoogle Scholar
  51. Li, F., Wang, X., Capasso, J. M., and Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–1746.PubMedCrossRefGoogle Scholar
  52. Li, R., Waga, S., Hannon, G., Beach, D., and Stillman, B. (1994). Differential effects by the p21 CDK inhibitor on PCNA dependent DNA replication and repair. Nature 371, 534–537.PubMedCrossRefGoogle Scholar
  53. Li, R. K., Mickle, D. A., Weissel, R. D., Mohabeer, M. K., Zhang, J., Rao, V., Li, G., Merante, F., and Jia, Z. Q. (1997). Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96, 179–186.Google Scholar
  54. Liu, Y., and Kitsis, R. N. (1996). Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J. Cell Biol. 133, 325–334.PubMedCrossRefGoogle Scholar
  55. Ludlow, J. W. (1996). Use of sequential immunoprecipitation to reveal discrete, separable populations of SV40 T-antigen binding to host cellular proteins. J. Virol. Methods 59, 105–112.PubMedCrossRefGoogle Scholar
  56. Lukas, J., Petersen, B. O., Holm, K., Bartek, J., and Helin, K. (1996). Deregulated expression of E2F family members induces S-phase entry and overcomes pl6INK4A-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057.PubMedGoogle Scholar
  57. Madden, S. L., Galella, E. A., Zhu, J., Bertelsen, A. H., and Beaudry, G. A. (1997). SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15, 1079–1085.PubMedCrossRefGoogle Scholar
  58. Mayol, X., Grana, X., Baldi, A., Sang, N., Hu, Q., and Giordano, A. (1993). Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene 8, 2561–2566.PubMedGoogle Scholar
  59. Mazur, X., Eppenberger, H. M., Bailey, J. E., and Fussenegger, M. (1998). A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol. Bioeng. submitted. Google Scholar
  60. Miller, C, Rilfs, J., Jaspers, S. R., Buckholt, M., and Miller Jr., T. B. (1994). Transformation of adult ventricular myocytes with the temperature sensitive A58 (tsA58) mutant of the SV40 large T antigen. Mol Cell. Biochem. 136, 29–34.PubMedCrossRefGoogle Scholar
  61. Nakayama, K., Ishida, N., Shirane, M., Inomata, A., Inoue, T., Shishido, N., Horii, I., Loh, D. Y., and Nakayama, K. (1996). Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–20.PubMedCrossRefGoogle Scholar
  62. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M., and Smith, J. R. (1994). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression system. Exp. Cell Res. 211, 90–98.PubMedCrossRefGoogle Scholar
  63. Pan, H., Yin, C, Dyson, N. J., Harlow, E., Yamasaki, L., and Van Dyke, T. (1998). Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within development. Mol. Cell 2, 283–292.PubMedCrossRefGoogle Scholar
  64. Polyak, K., Lee, M.-H., Erdjument-Bromage, H., Koff, A., Roberts, J. M., Tempst, P., and Massagué, J. (1994). Cloning of p27Kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimorphogenic signals. Cell 78, 59–66.PubMedCrossRefGoogle Scholar
  65. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B. (1997). A model for p53 induced apoptosis. Nature 389, 300–305.PubMedCrossRefGoogle Scholar
  66. Poolman, R. A., and Brooks, G. (1998). Expression and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J. Mol. Cell. Cardiol. 30, 2121–2135.PubMedCrossRefGoogle Scholar
  67. Quelle, D. E., Ashmun, R. A., Hannon, G. J., Rehberger, P. A., Trono, D., Richter, K. H., Walker, C, Beach, D., Sherr, C. J., and Serrano, M. (1995). Cloning and characterization of murine pl6INK4a and pl5INK4a genes. Oncogene 11, 635–645.PubMedGoogle Scholar
  68. Rossi, F. M. V., and Blau, H. M. (1998). Recent advances in inducible gene expression systems. Curr. Op. Biotech. 9, 451–456.CrossRefGoogle Scholar
  69. Rothen Rutishauser, B. M., Ehler, E., Perriard, E., Messerli, J. ML, and Perriard, J. C. (1998). Different behaviour of the non-sarcomeric cytoskeleton in neonatal and adult rat cardiomyocytes. J. Mol. Cell. Cardiol. 30, 19–31.PubMedCrossRefGoogle Scholar
  70. Rumyantsev, P. P. (1977). Interrelations of the proliferation and differentiation process during cardiac myogenesis and regeneration. Int. Rev. Cytol. 51, 187–273.Google Scholar
  71. Russell, P. (1998). Checkpoints on the road to mitosis. TIBS 23, 399–402.PubMedGoogle Scholar
  72. Saule, S., Mérigaud, J. P., Al-Moustafa, A.-E. M., Ferré, F., Rong, P. M., Amouyel, P., Quatannens, B., Stéhelin, D., and Dieterlen-Lièvre, F. (1987). Heart tumors specifically induced in young avian embryos by the v-myc oncogene. Proc. Natl. Acad. Sei. USA 84, 7982–7986.CrossRefGoogle Scholar
  73. Serrano, M., Lee, H., Chin, L., Cordon Cardo, C., Beach, D., and DePinho, R. A. (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37.PubMedCrossRefGoogle Scholar
  74. Sharpe, N., and Doughty, R. (1998). Epidemiology of heart failure and ventricular dysfunction. Lancet 352, S13–7.CrossRefGoogle Scholar
  75. Sohrmann, M., Schmidt, S., Hagan, I., and Simanis, V. (1998). Asymmetric segregation on spindle poles of the Schizosaccharomyces pombe septum-inducing protein kinase Cdc7p. Genes Dev. 12, 84–94.PubMedGoogle Scholar
  76. Soonpaa, M. H., and Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26.PubMedGoogle Scholar
  77. Soonpaa, M. H., Koh, G. Y., Pajak, L., Jing, S., Wang, H., Franklin, M. T., Kim, K. K., and Field, L. J. (1997). Cyclin Dl overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J. Clin. Invest. 99, 2644–2654.PubMedGoogle Scholar
  78. Steinhelper, M. E., Lanson, N. A., Jr., Dresdner, K. P., Delcarpio, J. B., Wit, A. L., Claycomb, W. C, and Field, L. J. (1990). Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am. J. Physiol. 259, H1826–H1834.PubMedGoogle Scholar
  79. Tarn, S. K., Gu, W., Mahdavi, V., and Nadal Ginard, B. (1995). Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann. NY Acad. Sei. 752, 72–79.CrossRefGoogle Scholar
  80. Toyoshima, H., and Hunter, T. (1994). p27, a novel inhibitor of Gl cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 61–1A.CrossRefGoogle Scholar
  81. Tsai, K. Y., Hu, Y., Macleod, K. F., Crowley, D., Yamasaki, L., and Jacks, T. (1998). Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304.PubMedCrossRefGoogle Scholar
  82. Van Meter, C. H., Claycomb, W. C, Delcarpio, J. B., Smith, D. M., deGruiter, H., Smart, F., and Ochsner, J. L. (1995). Myoblast transplantation in the porcine model: a potential technique for myocardial repair. J. Thorac. Cardiovasc. Surg. 110, 1442–1448.PubMedCrossRefGoogle Scholar
  83. Waga, S., Hannon, G., Beach, D., and Stillman, B. (1994). The p21 inhibitor of cyclin-dependent kinase controls DNA replication by interaction with PCNA. Nature 369, 574–578.PubMedCrossRefGoogle Scholar
  84. Yoshizumi, M., Lee, W.-S., Hsieh, C.-M., Tsai, J.-C, Li, J., Perrella, M. A., Patterson, C, Endege, W. O., Schlegel, R., and Lee, M.-E. (1995). Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J. Clin. Invest. 95, 2275–2280.PubMedCrossRefGoogle Scholar
  85. Zhang, P., Liégeois, N. J., Wong, C, Finegold, M., Hou, H., Thompson, J. C, Silverman, A., Harper, J. W., DePinho, R. A., and Elledge, S. J. (1997). Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387, 151–158.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Institute of Cell Biology, Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations