Development of an IRF-1 Based Proliferation Control System

  • P. P. Mueller
  • A. V. Carvalhal
  • J. L. Moreira
  • C. Geserick
  • K. Schroeder
  • M. J. T. Carrondo
  • H. Hauser
Part of the Cell Engineering book series (CEEN, volume 1)


Mammalian cell cultures are the preferred production system for secreted pharmaceutical proteins (Hauser, 1997). Life of a mammal begins with fertilization of the oocyte that divides and proliferates until the animal reaches its mature size. Further cell growth is tightly controlled. Proliferation and cell death are balanced to keep the total cell mass essentially constant, while the synthesis and secretion of cellular products continues. Despite rapid progress in the understanding of growth regulatory mechanisms, tumorigenic growth due the loss of proliferation control of a single body cell initially is still a leading cause of disease and death.


Cell Growth Inhibition Interferon Regulatory Factor Internal Ribosomal Entry Site Producer Cell Line Proliferation Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Rubeai, M., Emery, A.N., Chalder, S. and Jan, D.C. (1992) Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures, Cytotechnology 9. 85–97.PubMedCrossRefGoogle Scholar
  2. Au, W.C.. Moore, P.A.. LaFleur, D.W., Tombal, B., Pitha, P.M. (1998) Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes.. J. Mol. Chem. 273, 29210–7.Google Scholar
  3. Bebbington. C.R., Renner, G., Thomson, S., King, D., Abrams, D., Yarranton, G.T., (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology 10, 169.PubMedCrossRefGoogle Scholar
  4. Benech, P.. Vigneron, M., Peretz, D. Revel, M., Chebath, J. (1987) Interferon-responsive regulatory elements in the promoter of the human 2′,5′-oligo(A) synthetase gene. Mol. Cell. Biol. 7, 4498–504.PubMedGoogle Scholar
  5. Boultwood, J., Fidler, C. Lewis, S.. MacCarthy, A.. Sheridan, H., Kelly, S, Oscier, D., Buckle. V.J., Wainscoat, J.S. (1993) Allelic loss of IRFI in myelodysplasia and acute myeloid leukemia: retention of IRFI on the 5q-chromosome in some patients with the 5q-syndrome. Blood 82, 2611–6.PubMedGoogle Scholar
  6. Carvalhal, AV. Moreira, J.L.. Müller, P.P., Hauser, H.. and Carrondo, M.J.T. (1998) Cell growth inhibition by the IRF-1 system, in New developments and new applications in animal cell technology (Merten, O.-W., Perrin, P, and Griffiths, B., eds.) Kluwer Academic Publishers, pp. 215–217.Google Scholar
  7. Chang, C.H., Hammer, J., Loh, J.H., Fodor, W.L., Flavell, R.A. (1992) The activation of major histocompatibility complex class I genes by interferon regulatory factor-1 (IRF-1), Immunogenetics 35, 378–384.PubMedCrossRefGoogle Scholar
  8. Clemens, M.J. (1997) PKR-a protein kinase regulated by double-stranded RNA. Int. J. Biochem. Cell. Biol. 29, 945–949PubMedCrossRefGoogle Scholar
  9. Cockett, M.I. Bebbington, C.R., Yarranton, G.T. (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8, 662–667.PubMedCrossRefGoogle Scholar
  10. Fibi, MR.. Hermentin, P., Pauly, J.U., Lauffer, L. and Zettlmeissl, G. (1995) N-and O-glycosylation muteins of recombinant human erythropoietin secreted from BHK-21 cells, Blood 85, 1229–1236.PubMedGoogle Scholar
  11. Fujita, T., Sakakibara, J., Sudo, Y., Miyamoto, M., Kimuia, Y. and Taniguchi, T. (1988) Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements EMBOJ. 7, 3397–3405.Google Scholar
  12. Fujita, T.. Kimura, Y., Miyamoto, M., Barsoumian, E. L. and Taniguchi, T. (1989) Induction of endogenous IFN-α and IFN-ß genes by a regulatory transcription factor, IRF-1, Nature 337, 270–272.Google Scholar
  13. Fukuda, M.N.. Sasaki, H., Lopez. L. and Fukuda, M. (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates, Blood 73, 84–89.PubMedGoogle Scholar
  14. Fussenegger, M., Mazur, X. and Bailey, J. E. (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells, Biotechnol. Bioeng. 55, 927–938.CrossRefGoogle Scholar
  15. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. and Bailey, J. E. (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chiese hamster ovary cells, Nat. Biotechnol. 16, 468–472.PubMedCrossRefGoogle Scholar
  16. Fussenegger, M., Bailey, J.. Hauser, H. and Mueller, P.P. (1999) Genetic Optimization of Recombinant Protein Production by Mammalian Cells, TIBTECH 17, 43–50.Google Scholar
  17. Gawlitzek, M.. Conradt, H. S. and Wagner, R. (1995) Effect of different cell culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein, Biotecnol. Bioeng. 46, 536–544.CrossRefGoogle Scholar
  18. Gawlitzek, M., Valley, U., Wagner, R. (1998) Ammonium ion/glucosamine dependent increase of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells, Biotechnol. Bioeng. 57, 518–528.PubMedCrossRefGoogle Scholar
  19. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters, Proc. Natl. Acad. Sci. USA 89, 5547–5551.PubMedCrossRefGoogle Scholar
  20. Gossen, M., Freundlieb, S., Bender, G., Müller, G, Hillen, W. and Bujard, H. (1995) Transcriptionai activation by tetracyclines in mammalian cells., Science 268, 1766–1769.PubMedCrossRefGoogle Scholar
  21. Goto, M., Akai, K., Murakami, A., Hashimoto, C., Tsuda, E., Ueda, M., Kawanishi, G., Takahashi, N., Ishimoto A., Chiba, H. and Sasaki, R. (1988). Production of recombinant human erythropoietin in mammalian cells: Host-cell dependency of the biological activity of the cloned glycoprotein, Bio/Technology 6, 67–71.CrossRefGoogle Scholar
  22. Grabenhorst, E., Hoffmann, A., Nimtz, M., Zetthneissl, G. and Conradt, H. S. (1995). Construction of stable BHK-21 cells expressing human secretory glycoproteins and human Gal(βl-4)GlcNAc-R α2,6-sialyltransferase. α2,6-linked NeuAc is preferentially attached to the Gal(βl-4)GlcNAc(βl-2)Man(αl-3)-branch of diantennary oligosaccharides from secreted recombinantß-trace protein, Eur.J. Biochem. 232, 718–725.PubMedCrossRefGoogle Scholar
  23. Graham, F. and v. der Eb, L. (1973) A new technique for the assay of infectivity of human adenovirus DNA, Virology 52. 456–487.PubMedCrossRefGoogle Scholar
  24. Gramer, M. J. and Goochee, C. F. (1990) Glycosidase activities in Chinese hamster ovarycell lysate and cell culture supernatant, Biotechnol. Prog. 9, 366–373.CrossRefGoogle Scholar
  25. Gramer, M. J., Goochee, C.F., Chock, V.Y., Brousseau, D.T. and Sliwkowsky, M.B. (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase, Bio/Technology 13, 692–698.PubMedCrossRefGoogle Scholar
  26. Grammatikos, S. I., Valley, U.. Nimtz, M., Conrad, H. S., Wagner, R. (1998) Intracellular UDP-N-acetyl-hexosamine pool affects N-glycan complexity: A mechanism of anmonium action on protein glycosylation, Biotechnol. Progr. 14, 410–419.CrossRefGoogle Scholar
  27. Harada, H., Fujita, T.. Miyamoto, M., Kimura, Y., Maruyama, M., Furia, A., Miyata, T. and Taniguchi, T. (1989) Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes, Cell 58, 729–739.PubMedCrossRefGoogle Scholar
  28. Harada, H., Willison, K., Sakakibara, J., Miyamoto, M., Fujita, T. and Taniguchi, T. (1990) Absence of the type I IFN system in EC cells: Transcriptionai activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell 63, 303–312.PubMedCrossRefGoogle Scholar
  29. Harada, H.. Kitagawa, M., Tanaka, N., Yamamoto, H., Harada, K., Ishihara, M. and Taniguchi, T. (1993) Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and-2, Science 259, 971–974.PubMedCrossRefGoogle Scholar
  30. Hassel, B.A., Zhou, A., Sotomayor, C., Maran, A., Silverman, R.H. (1993) A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviraleffects of interferon, EMBO J. 12, 3297–304.PubMedGoogle Scholar
  31. Hauser, H.: Heterologous expression of genes in mammalian cells. (1997) In: Mammalian Cell Biotechnology in Protein Production. (H. Hauser and R. Wagner, eds.) De Gruyter, Berlin, pp. 1–32.Google Scholar
  32. Jacobsen, H.. Czamiecki, C.W., Krause, D., Friedman, R.M. and Silverman, R.H. (1983) Interferon-induced synthesis of 2-5A-dependent RNase in mouse JLS-V9R cells. Virology 125, 496–501.PubMedCrossRefGoogle Scholar
  33. Jenkins, N.. Parekh, R. B. and James, D. C. (1996) Getting the glyosylation right: implications for the biotechnological industry, Nat. Biotechnol. 14, 975–981.PubMedCrossRefGoogle Scholar
  34. Kim, Y.H., lida, T., Fujita, T., Terada, S., Kitayama, A., Ueda, H., Prochownik, E.V. and Suzuki, E. (1998) Establishment of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible antisense c-Jun gene, Biotechnol. Bioeng. 58, 65–72.PubMedCrossRefGoogle Scholar
  35. Kimura, T., Nakayama, K., Penninger, J., Kitagawa, M., Harada, H., Matsuyama, T., Tanaka, N., Kamijo, R., Vilcek, J., Mak, T.W. et al. (1994) Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 264, 1921–1924.PubMedCrossRefGoogle Scholar
  36. Kirchhoff, S., Schaper, F. and Hauser, H. (1993) Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes, Nucleic Acids Res. 21, 2881–2889.PubMedCrossRefGoogle Scholar
  37. Kirchhoff, S.. Koromilas, A. E., Schaper, F., Grashoff, M., Sonenberg, N. and Hauser, H. (1995) IRF-1 induced cell growth inhibition and interferon induction requires the activity ofthe protein kinase PKR. Oncogene 11. 439–445.PubMedGoogle Scholar
  38. Kirchhoff, S., Kröger, A., Cruz, H., Tümmler, M., Schaper, F., Köster, M. and Hauser, H. (1996) Regulation of cell growth by IRF-1 in BHK-21 cells. Cytotechnology 22, 147–156.CrossRefGoogle Scholar
  39. Kirchhoff, S.. Schaper, F., Oumard, A. and Häuser, H. (1998) In vivo formation of IRF-1 homodimers, Biochimie, in press.Google Scholar
  40. Kirchhoff, S. and Hauser, H. (1999a) Cooperative activity between HER oncogenes and the tumor suppressor of IRF-1 results in apoptosis. Oncogene. in press.Google Scholar
  41. Kirchhoff, S., Wilhelm, D., Angel, P. and Hauser, H. (1999b) NF-kB activation is required for IRF-1 mediated IFN-induction. Europ. J. of Biochem., in press.Google Scholar
  42. Köster, M., Kirchhoff, S., Schaper, F. and Häuser, H. (1995) Proliferation control of mammalian cells by the tumor suppressor IRF-1, in Animal Cell Technology: Developments towards the 21st Century (Beuvery, Griffiths. Zeijlemaker. eds.) Kluwer Academic Publishers, pp. 33–44.Google Scholar
  43. Koromilas, A.E., Roy, S., Barber, G.N., Katze, M.G. and Sonenberg (1992) Malignant transformation bya mutant of the IFN-inducible dsRNA-dependent protein kinase, Science 257, 1685–1689.PubMedCrossRefGoogle Scholar
  44. Kuhen, K.L., Vessey, J.W. and Samuel, C.E. (1998) Mechanism of interferon action: identification of essential positions within the novel 15-base-pair KCS element required for transcriptional activation of the RNA-dependent protein kinase pkr gene, J. Virol. 72, 9934–9939.PubMedGoogle Scholar
  45. Lee, S.B. and Esteban, M. (1993) The interferon-induced double-stranded RNA-activated human p68 protein kinase inhibits the replication of vaccinia virus. Virology 193, 1037–1041.PubMedCrossRefGoogle Scholar
  46. Lengyel, P. (1993) Tumor-suppressor genes: news aboutthe interferon connection Proc. Natl. Acad. Sci. USA, 90. 5893–5895.PubMedCrossRefGoogle Scholar
  47. Lin, R.. Mustafa, A., Nguyen, H., Gewert, D. and Hiscott, J. (1994) Mutational analysis of interferon (IFN) regulatory factors I and 2. J. Biol. Chem. 269, 17542–17549PubMedGoogle Scholar
  48. Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kündig, T.M., Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C.L., Narendran, A., Suzuki, H., Ohashi, P.S., Paige, C.J., Taniguchi, T. and Mak, T.W. (1993) Target disruption of IRF-1 or IRF-2 results in abnormal type1 IFN gene induction and aberrant lymphocyte development, Cell 75, 83–97.PubMedGoogle Scholar
  49. Mazur, X.. Fussenegger, M., Renner, W.A. and Bailey, J.E. (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27, Biotechnol. Prog. 14. 705–713.PubMedCrossRefGoogle Scholar
  50. Mitchell, C.A.. Beall, J.A.. Wells, J.R., Gray, P.P. (1991) Growth and protein production kinetics of a murine myeloma cell line transfected with the human growth hormone gene, Cytotechnology 5, 2232–31.CrossRefGoogle Scholar
  51. Miyamoto, M., Fujita, T., Kimura, Y., Maruyama, M.. Harada, H., Sudo, Y., Miyata, T. and Taniguchi, T. (1988) Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-gene regulatory elements, Cell 54. 903–913.PubMedCrossRefGoogle Scholar
  52. Mueller, P. P., Kirehhoff, S. and Hauser, H. (1998) in New Developments and New Applications in Animal Cell Technology (Merten, O.W., Perrin, P. and Griffiths, J.B., eds) Kluwer Academic Publishers, pp. 209–213.Google Scholar
  53. Mueller, P.P.. Schlenke, P.. Nimtz, M., Conradt, H.S. and Hauser, H. (1999). Recombinant glycoprotein product quality in proliferation controlled BHK-21 cells. Submitted.Google Scholar
  54. Munzert, E.. Heidemann, R., Büntemeyer, H., Lehmann, J. and Müthing, J. (1998) Production of recombinant human antithrombin III on 20-1 bioreactor sale: Correlation of supernatant neuraminidase activity, desialylation. and decrease of biological activity of recombinant glycoprotein, Biotechnol. and Bioeng. 56, 441–447.CrossRefGoogle Scholar
  55. Pendse, G.J., Karkare, S. and Bailey, J.E. (1992) Effect of cloned gene dosage on cell growth and hepatitisB surface antigen synthesis and secretion in recombinant CHO cells, Biotechnol. Bioeng. 40. 119–129.CrossRefGoogle Scholar
  56. Pine, R., Decker, T.. Kessler, D.S.. Levy, D.E. and Darnell Jr., J.E. (1990) Purification and cloning of interteron-stimulated gene factor 2 (ISGF2): 1SGF2 (IRF-1) can bind to the promoters of both beta interferon-and interteron-stimulated genes but is not a primary transcriptonal activator of either. Mol. Cell. Biol. 10, 2448–2457.PubMedGoogle Scholar
  57. Pine, R. (1992) Constitutive expression of an ISGF2/IRF1 transgene leads to interferon independent activation of interferon-inducible genes and resistance to virus infection, J. Virol. 66, 4470–4478.PubMedGoogle Scholar
  58. Raveh, T., Hovanessian, A.G., Meurs, E.F., Sonenberg, N. and Kimchi, A. (1996) Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons J. Biol. Chem. 271, 25479–15484.PubMedCrossRefGoogle Scholar
  59. Reich, N.C., Darnell, J.E. Jr (1989) Differential binding of interferon-induced factors to an oligonucleotide that mediates transcriptional activation, Nucleic Acids Res. 17, 3415–3424.PubMedCrossRefGoogle Scholar
  60. Reis, L.F.L.. Ruffner, H., Stark, G., Aguet, M. and Weissmann, C. (1994) Mice devoid of IRF-1 show normal expression of type 1 IFN genes. EMBO J. 13. 4798–4806.PubMedGoogle Scholar
  61. Reis, L.R.L.. Harada, H.. Wolchok, J. D., Taniguchi, T. and Vilcek, J. (1992) Critical role of a common transcription factor, IRF-1. in the regulation of IFN-and IFN-inducible genes, EMBO J. 11. 185–193.PubMedGoogle Scholar
  62. Robinson, D.K.. Memmert, K.W. (1991) Kinetics of recombinant iinmunoglobulin production by mammalian cells in continuous culture, Biotechnol. Bioeng. 38, 972–976.CrossRefGoogle Scholar
  63. Samuel, C.E. (1998) Reoviruses and the interferon system, Curr Top. Microbiol. Immunol. 233, REOVIR.II, 125–145.PubMedGoogle Scholar
  64. Schaper, F., Kirchhoff, S., Posern, G., Koester, M., Oumard, A., Sharf, R., Levi, B.Z. and Hauser, H. (1998) Functional domains of interferon regulatory factor I (IRF-1), Biochem. J. 335, 147–157.PubMedGoogle Scholar
  65. Smiley, A.L., Hu, W.S. and Wang, D.I.C. (1989) Production of human immune interferon by recombinant mammalian cells cultivated on microcarriers Biotechnol. Bioeng. 33, 1181–1190.CrossRefGoogle Scholar
  66. Srivastava, S.P., Kumar, K.U. and Kaufman, R.J. (1998) Phosphorylation of eukaryotic translation initiation factor mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase, J. Biol. Chem. 23,273, 2416–2423.CrossRefGoogle Scholar
  67. Stevens, A.M., Yu-Lee, L. (1992) The transcription factor interferon regulatory factor-I is expressed during both early GI and the Gl/S transition in the prolactin-induced lymphocyte cell cycle, Mol Endocrinol. 6, 2236–43.PubMedCrossRefGoogle Scholar
  68. Suzuki, E. and Ollis, D.E. (1990) Enhanced antibody production at slowed growth rates: experimental demonstration and asimple structured model, Biotechnol. Prog. 6, 231–236.PubMedCrossRefGoogle Scholar
  69. Tan, R.A., Taniguchi, T. and Harada, H. (1996) Identification of the lysyl oxidase gene as target of the anti oncogenic transcription factor, IRF-1, and its possible role in tumor suppression, Cancer Res. 56, 2417–2421.PubMedGoogle Scholar
  70. Tanaka, N.. Kawakami, T., Taniguchi, T. (1993) Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system, Mol. Cell. Biol. 13, 4531–4538.PubMedGoogle Scholar
  71. Tanaka, H. and Samuel, C.E. (1994) Mechanism of interferon action: structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase, Proc. Natl. Sci. USA 91, 7995–7999.CrossRefGoogle Scholar
  72. Tanaka, N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T.. Matsuyama, T., Lamphier, M. C., Aizawa, S., Mak, T. W. and Taniguchi, T. (1994) Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1, Cell 77, 829–839.PubMedCrossRefGoogle Scholar
  73. Tanaka, N., Ishihara, M., Lamphier, M.S., Nozawa, H., Matsuyama, T., Mak, T.W., Aizawa, S., Tokino, T., Oren, M. and Taniguchi, T. (1996) Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816–818.PubMedCrossRefGoogle Scholar
  74. Tonouchi, N., Koyama, N, Miwa, A. (1992) CHO strain producing high-level human IL-6 with the 3′ deletion construct,. J. Biotechnol. 22, 283–289.PubMedCrossRefGoogle Scholar
  75. Tsao, E.I., Bonn, M.A., Omstead, D.R., Munster, M..J. (1992) Optimization of a roller bottle process for the production of recombinant erythropoietin, Ann. N. Y. Acad. Sci. 665, 127–136.PubMedCrossRefGoogle Scholar
  76. Uegaki, K., Shirakawa, M., Harada, H., Taniguchi, T. and Kyogoku, Y. (1995) Secondary structure and folding topology of the DNA binding domain of interferon regulatory factor 2, as revealed by NMR spectroscopy, FEBS Lett. 359, 184–188.PubMedCrossRefGoogle Scholar
  77. Yim, J.H., Wu, S.J.. Casey M.J.. Norton, J.A. and Doherty, G.M. (1997) IFN regulatory factor-1 gene transfer into an aggressive, nonimmunogenic sarcoma suppresses the malignant phenotype and enhances immunogenicity in syngeneic mice. J. Immunol. 158, 1284–1292.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P. P. Mueller
    • 1
  • A. V. Carvalhal
    • 2
  • J. L. Moreira
    • 2
  • C. Geserick
    • 1
    • 3
  • K. Schroeder
    • 1
  • M. J. T. Carrondo
    • 2
  • H. Hauser
    • 1
  1. 1.Department of Gene Regulation and DifferentiationGBF - National Research Center for BiotechnologyBraunschweigGermany
  2. 2.ITQB/IBET- Instituto de Tecnologia Quimica e Biologica/Instituto de Biologica Experimental e TecnologiaOeirasPortugal
  3. 3.Novo NordiskGentofteDenmark

Personalised recommendations