Control of Mammalian Cell Proliferation as an Important Strategy in Cell Culture Technology, Cancer Therapy and Tissue Engineering

  • M. Fussenegger
  • J. E. Bailey
Part of the Cell Engineering book series (CEEN, volume 1)


In the last decades research on the molecular basis of proliferation and cell-cycle control was mainly motivated by curiosity to understand this complex regulatory network which orchestrates the global changes of cycling cells in a temporal and spatial manner. Based on such mechanistic research, cell-cycle regulatory circuits came to be perceived as a fundamental program which stands at the center of multicellular life, since the cell-cycle machinery integrates several important decisions on a cell’s fate such as apoptosis, differentiation and growth. Consequently, cell-cycle control systems are important for cell homeostasis and, when defective, can lead to uncontrolled proliferation and neoplastic growth. Cell-cycle regulatory networks have certainly become a focus in cancer therapy for control of carcinogenic growth and the elimination of neoplastic cells. The bioengineering community remained relatively unaffected by theses key developments in the field of proliferation control and continued to use indefinitely growing, neoplastic cells as their workhorse for biopharmaceutical manufacturing. Only recently, as a more refined picture of cell-cycle regulatory systems emerged from basic research, long-standing critical issues in cell culture technology such as apoptosis, protein production, cell differentiation and growth in serum- and protein-free media have been addressed by metabolic engineering and process development strategies using mammalian cells.


Growth Arrest Chinese Hamster Ovary Cell Metabolic Engineering Chinese Hamster Ovary Cold Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.M., and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.PubMedCrossRefGoogle Scholar
  2. Aktas, H., Cai, H., and Cooper, G.M. (1997) Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin Dl and CDK inhibitor p27KIPl. Mol. Cell Biol. 17, 3850–3857.PubMedGoogle Scholar
  3. Al-Rubeai, M. (1998) Apoptosis and cell culture technology. in S. Scheper (ed.) Advances in Biochemical Engineering/Biotechnology, Vol. 59, Springer-Verlag Berlin Heidelberg, pp. 225–249.Google Scholar
  4. Al-Rubeai, M, Emery. A.N., Chalder, S., and Jan, D.C. (1992) Specific monoclonal antibody productivity and the cell-cycle comparisons of batch, continuous and perfusion cultures. Cytotechnology 9, 85–97.PubMedCrossRefGoogle Scholar
  5. Al-Rubeai, M., Singh, R.P., Goldman, M., and Emery, A.N. (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol. Bioeng. 45, 463–472.CrossRefPubMedGoogle Scholar
  6. Alves, P.M., Carvalhal, A.V., Moreira, J.L., Santos, H., and Carrondo, M.J.T. (1998) Effect of growth arrest in BHK metabolism: on line monitoring by 13C and31P NMR spectroscopy. in O.W. Merten, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 223–225.Google Scholar
  7. Archer, S.Y., Meng, S., Shei, A., and Hodin, R.A. (1998) p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer. Proc. Natl. Acad. Sci. USA 95, 6791–6796.PubMedCrossRefGoogle Scholar
  8. Avruch, J., Zhang, X., and Kyriakis, J. (1994) Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci. 19, 279–283.PubMedCrossRefGoogle Scholar
  9. Baeg, G.H., Matsumine, A., Kuroda, T., Bhattacharjee, R.N., Miyashiro, I., Toyoshima, K., and Akiyama, T. (1995) The tumour suppressor gene product APC blocks cell cycle progression from G0/G to S phase. EMBO J. 14, 5618–5625.PubMedGoogle Scholar
  10. Baldin, V., Cans, C., Watanabe, N., and Ducommun, B. (1997) Evidence for a mammalian Niml-like kinase pathway acting at the G0/1S transition. Biochem. Biophvs. Res. Commun. 236, 130–134.CrossRefGoogle Scholar
  11. Ball, K.L., Lain, S., Fahraeus, R., Smythe, C., and Lane, D.P. (1997) Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAFl. Curr. Biol. 7, 71–80.PubMedCrossRefGoogle Scholar
  12. Barnabe, N., and Butler, M. (1994) Effect of temperature on nucleotide pools and monoclonal antibody production in a mouse hybridoma. Biotechnol. Bioeng. 44, 1235–1245.CrossRefPubMedGoogle Scholar
  13. Bash, J., Zong, W.X., and Gelinas, C. (1997) c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol. Cell Biol. 17, 6526–6536.PubMedGoogle Scholar
  14. Belizario, J.E., and Dinarello, C.A. (1991) Interleukin 1, interleukin 6, tumor necrosis factor, and transforming growth factor beta increase cell resistance to tumor necrosis factor cytotoxicity by growth arrest in the Gl phase of the cell cycle. Cancer Res. 51, 2379–2385.PubMedGoogle Scholar
  15. Berndt, N., Dohadwala, M., and Liu, C.W. (1997) Constitutively active protein phosphatase lalspha causes Rb-dependent Gl arrest in human cancer cells. Curr. Biol. 7, 375–386.PubMedCrossRefGoogle Scholar
  16. Bischoff, J.R., Kirn, D.H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J.A., Sampson-Johannes, A., Fattaey, A., and McCormi, F. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.PubMedCrossRefGoogle Scholar
  17. Bissonnette, R.P., Echeverri, F., Mahboubi, A., and Green, D.R. (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554.PubMedCrossRefGoogle Scholar
  18. Bissonnette, N., and Hunting, D.J. (1998) p21-induced cycle arrest in Gl protects cells from apoptosis induced by UV-irradiation of RNA polymerase II blockage. Oncogene 16, 3461–3469.PubMedCrossRefGoogle Scholar
  19. Bloemkolk, J.-W., Gray, M.R., Merchant, F., and Mosmann, T.R. (1992) Effect of temperature on hybridoma cell cycle and Mab production. Biotechnol. Bioeng. 40, 427–431.CrossRefPubMedGoogle Scholar
  20. Borner, C. (1996) Diminished cell proliferation associated with the death-protective activity of Bcl-2. J. Biol. Chem. 271, 12695–12698.PubMedGoogle Scholar
  21. Borth, N., Heider, R., Assadian, A., and Katinger, H. (1992) Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content. J. Biotechnol. 25, 319–331.PubMedCrossRefGoogle Scholar
  22. Bovenberg, W.A., Dauwerse, J.G., Pospiech, H.M., Van Buul-Offers, S.C., Van den Brade, J.L., and Sussenbach, J.S. (1990) Expression of recombinant human insulin-like growth factor 1 in mammalian cells. Mol. Cell Endocrino!. 74, 45–59.CrossRefGoogle Scholar
  23. Brooks, E.E., Gray, N.S., Joly, A., Kerwar, S.S., Lum, R., Mackman, R.L., Norman, T.C., Rosete, J., Rowe, M., Schow, S.R., Schultz, P.G., Wang, X., Wick, M.M., and Shiffman, D. (1997) CVT-313, a specific and potent inhibtor of CDK2 that prevents neointimal proliferation. J. Biol. Chem. 272, 29207–29211.PubMedCrossRefGoogle Scholar
  24. Brown, D.R., Thomas, C.A., and Deb, S.P. (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of tis cell-cycle-inhibory function induces tumorigenesis. EMBO J. 17, 2513–2525.PubMedCrossRefGoogle Scholar
  25. Burcin, M.M., O’Malley, B.W., and Tsai, S.Y. (1998) A regulatory system for target gene expression. Frontiers in Bioscience 3, 1–7.Google Scholar
  26. Burd, C.G., and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621.PubMedCrossRefGoogle Scholar
  27. Carvalhal, A.V., Moreira, J.L., Müller, P., Hauser, H., and Carrondo, M.J.T. (1998) Cell growth inhibition by the IRF-1 system, in O.W. Merten, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 215–217.Google Scholar
  28. Chan, J.Y., Li, L., Fan, Y.H., Mu, Z.M., Zhang, W.W., and Chang, K.S. (1997) Cell-cycle regulation of DNA damage-induced expression of the suppressor gene PML. Biochem. Biophvs. Res. Commun. 240, 640–646.CrossRefGoogle Scholar
  29. Chang, P.Y., Gjornstad, K.A., Goncz, K., and Blakely, E.A. (1990) Involvement of protein synthesis in the development of thermotolerance using a CHO temperature-sensitive mutant. Int. J. Hyperthermia 6, 105–116.PubMedGoogle Scholar
  30. Chen, H.W., and Huang, H.C. (1998) Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol. 124, 1029–1040.PubMedCrossRefGoogle Scholar
  31. Chenoufi, N., Baffet, G., Drenou, B., Cariou, S., Desille, M., Clement, B., Brissot, P., Lescoat, G., and Loreal, O. (1998) Deferoxamine arrests in vitro the proliferation of porcine hepatocyte in Gl phase of the cell cycle. Liver 18, 60–66.PubMedGoogle Scholar
  32. Chevalot, I., Dardenne, M., Cherlet, M., Engasser, J.M., and Marc, A. (1995) Effect of sodium butyrate on protein production in different culture systems, in E.C. Beuvery, R. Spier and B. Griffiths (eds.), Developments Towards The 21st Century, Kluwer Academic Publishers, Dordrecht, pp. 143–147.Google Scholar
  33. Coats, S., Flanagan, W.M., Nourse, J., and Roberts, J.M. (1996) Requirement of p27Kipl for restriction point control of the fibroblast cell cycle. Science 272, 877–880.PubMedCrossRefGoogle Scholar
  34. Coco-Martin, J.M., Oberink, J.W., van der Velden-de Groot, T.A.M., and Beuvery, E.C. (1992) The potential of flow cytometric analysis for the characterization of hybridoma cells in suspension cultures. Cytotechnology 8, 65–74.PubMedCrossRefGoogle Scholar
  35. Coles, L.S., Diamond, P., Occhiodoro, F., Vadas, M.A., and Shannon, M.F. (1996) Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res. 24, 2311–2317.PubMedCrossRefGoogle Scholar
  36. Colotta, F., Polentarutti, N., Sironi, M., and Mantovani, A. (1992) Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J. Biol. Chem. 267: 18278–18283.PubMedGoogle Scholar
  37. Craig, E.A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239–280.PubMedCrossRefGoogle Scholar
  38. Cristofalo, V.J., Doggett, D.L., Frederich-Brooks, K.M., and Phillips, P.D. (1989) Growth factors as probes for cell aging. Exp. Gerontol. 24, 367–374.PubMedCrossRefGoogle Scholar
  39. Croix, S.T., and Kerbel, R.S. (1997) Cell adhesion and drug resistance in cancer. Curr. Opin. Oncol. 9, 549–556.Google Scholar
  40. Day, ST., Crouthamel, W.G., Martinelli, L.C., and Ma, J.K.H. (1978) Mechanism of fluorometric analysis of tetracycline involving metal complexation. J. of Pharmaceutical Sciences 67, 1518–1523.CrossRefGoogle Scholar
  41. De Leon, M., Jackson, K.M., Cavanaugh, J.R., Mbangkollo, D., and Verret, C.R. (1998) Arrest of cell cycle reduces susceptibility of target cells to perforin-mediated lysis. J. Cell Biochem. 69, 425–435.PubMedCrossRefGoogle Scholar
  42. Denarier, E., Fourest-Lieuvin, A., Bosc, C., Pirollet, F., Chapel, A., Margolis, R.L., and Job, D. (1998) Nonneural isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 95, 6055–6060.PubMedCrossRefGoogle Scholar
  43. Desrivieres, S., Volarevic, S., Mercep, L., and Ferrari, S. (1997) Evidence for different mechanisms of growth inhibition of T-cell lymphoma by phorbol esters and concanavalin A. J. Biol. Chem. 272, 2470–2476.PubMedGoogle Scholar
  44. Dickson, A.J. (1998) Apoptosis regulation and its applications to biotechnology. Trends in Biotechnology 16, 339–342.PubMedCrossRefGoogle Scholar
  45. El-Diery, W.W., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.CrossRefGoogle Scholar
  46. Elledge, S.J., and Harper, J.W. (1998) The role of protein stability in the cell cycle and cancer. Biochim. Biophys. Acta 1377, 61–70.Google Scholar
  47. Franek, F., Holy, A., Votruba, I., and Eckschlager, T. (1999) Modulation of cell cycle progression and of antibody production in mouse hybridomas by a nucleotide analogue. Cytotechnology, in press.Google Scholar
  48. Franek, F., Vomastek, T., and Dolnikova, J. (1992) Fragmented DNA and apoptotic bodies document the programmed way of cell death in hybridoma cultures. Cytotechnology 9, 117–123.PubMedCrossRefGoogle Scholar
  49. Fry, M.R., Saxon, M.L., Zhao, X., Rollings, A., Evans, S.S., and Black, J.D. (1997) Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21 (wafl/cipl) and p27 (kipl) and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J. Biol. Chem. 272, 9424–9435.CrossRefGoogle Scholar
  50. Fuller, B.J. (1987) Storage of cells and tissues at hypothermia for clinical use. Symp. Soc: Exp. Biol. 41, 341–362.Google Scholar
  51. Furukawa, K., and Ohsuye, K. (1998) Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme. Cytotechnology 26, 153–164.CrossRefGoogle Scholar
  52. Fussenegger, M., Mazur, X., and Bailey, J.E. (1997a) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol. Bioeng. 55, 927–939.CrossRefPubMedGoogle Scholar
  53. Fussenegger, M., Moser, S., Mazur, X., and Bailey, J.E. (1997b) Autoregulated multicistronic expression vectors provide one-step cloning of regulated product gene expression in mammalian cells. Biotechnol. Prog. 13, 733–740.PubMedCrossRefGoogle Scholar
  54. Fussenegger, M., and Bailey, J.E. (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells: implications for Biotechnology. Biotechnol. Prog., in press.Google Scholar
  55. Fussenegger, M., Bailey, J.E., Hauser, H., and Müller, P.P. (1998a) Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends in Biotechnology, in press.Google Scholar
  56. Fussenegger, M., Sburlati, A., and Bailey, J.E. (1998b) Metabolic engineering of mammalian cells, in E.T. Papoutsakis and S.Y. (eds.), Metabolic engineering, Bioprocess Technology, Marcel Dekker, Inc., in press.Google Scholar
  57. Fussenegger, M., Schlatter, S., Dätwyler, D., Mazur, X., and Bailey, J.E. (1998c) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nature Biotechnol. 16, 468–472.CrossRefGoogle Scholar
  58. Fussenegger, M., Mazur, X., and Bailey, J.E. (1998d) pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotechnol. Bioeng. 57, 1–10.PubMedCrossRefGoogle Scholar
  59. Fussenegger, M., Moser, S., and Bailey, J.E. (1999a) pQuattro vectors allow one-step multigene metabolic engineering and auto-selection of quattrocistronic artificial mammalian opérons. Cytotechnology, in press.Google Scholar
  60. Fussenegger, M., Moser, S., and Bailey, J.E. (1999b) Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology, in press.Google Scholar
  61. Fussenegger, M., Fassnacht, D., Schwartz, R., Zanghi, J., Graf, M., Bailey, J.E., and Pörtner, R. (1999) Overexpression of the survival factor Bcl-2 increases cell density of Chinese hamster ovary (CHO) cell cultures. Cytotechnology, submitted.Google Scholar
  62. Gansauge, S., Nussler, A.K., Beger, H.G., and Gansauge, F. (1998) Nitric oxide-induced apoptosis in human pancreatic carcinoma cells lines is associated with a G1-arrest and an increase of the cyclin-dependent kinase inhibitor p21WAFI/CIPl. Cell Growth Differ 9, 611–617.PubMedGoogle Scholar
  63. Garkavtsev, I., Grigorian, I.A., Ossovskaya, V.S., Chernov, M.V., Chumakov, P.M., and Gudkov, A.V. (1998) The candidate tumour suppressor p33INGl cooperates with p53 in cell growth control. Nature 391, 295–298.PubMedCrossRefGoogle Scholar
  64. Giard, D.J., and Fleischaker, R.J. (1980) Examination of parameters affecting human interferon production with microcarrier-grown fibroblast cells. Antimicrob. Agents Chemother. 18, 130–136.PubMedGoogle Scholar
  65. Giard, D.J., Fleischaker, R.J., and Fabrikant, M. (1982) Effect of temperature on the production of human fibroblast interferon. Proc. Soc. Exp. Biol. Med. 170, 155–159.PubMedGoogle Scholar
  66. Glaser, V. (1998) Fake blood marked gets hemoglobin transfusion from reticulocytes. Nat. Biotechnol. 16, 709.PubMedCrossRefGoogle Scholar
  67. Gorospe, M., Cirielli, C., Wang, X., Seth, P., Capogrossi, M.C., and Holbrook, N.J. (1997) p21 (Wafl/Cipl) protects against p53-mediated apoptosis in human melanoma cells. Oncogene 14, 929–935.PubMedCrossRefGoogle Scholar
  68. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.PubMedCrossRefGoogle Scholar
  69. Gregory, CD., and Milner, A.E. (1994) Regulation of cell survival in Burkitt lymphoma: implications from studies of apoptosis following cold-shock treatment. Int. J. Cancer 57, 419–426.PubMedCrossRefGoogle Scholar
  70. Greulich, H., and Erikson, R.L. (1998) An analysis of Mekl signaling in cell proliferation and transformation. J. Biol. Chem. 273, 13280–13288.PubMedCrossRefGoogle Scholar
  71. Grunstein, M. (1997) Histone acetylation in the chromatin structure and transcription. Nature 389, 349–352.PubMedCrossRefGoogle Scholar
  72. Gurtu, V., Yan, G. and Zhang, G. (1996) 1RES bicistronic expression vector for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun. 229, 295–298.PubMedCrossRefGoogle Scholar
  73. Haas-Kogan, D.A., Kogan, S.C., Levi, D., Dazin, P., T’Ang, A., Fung, Y.K.T., and Israel, M.A. (1995) Inhibition of apoptosis by the retinoblastoma gene product. EMBO J. 14, 461–472.PubMedGoogle Scholar
  74. Halevy, O., Novitch, B.G., Spicer, D.B., Skapek, S.X., Rhee, J., Hannon, G.J., Beach, D., and Lassar, A.B. (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018–1021.PubMedCrossRefGoogle Scholar
  75. Hashemolhosseini, S., Nagamine, Y., Morley, S.J., Desrivieres, S., Mercep, L., and Ferrari, S. (1998) Rapamycin inhibition of the Gl to S transition is mediated by effects on cyclin Dl mRNA and protein stability. J. Biol. Chem. 273, 14424–14429.PubMedCrossRefGoogle Scholar
  76. Hauser, H. (1997) in H. Hauser and R. Wagner (eds.) Mammalian cell biotechnology in protein production, W. DeGruyter, New York. pp. 3–32.Google Scholar
  77. Hauser, P.J., Agrawal, D., Flanagan, M., and Pledger, W.J. (1997) The role of p27kipl in the in vitro differentiation of murine keratinocytes. Cell Growth Differ. 8: 203–211.PubMedGoogle Scholar
  78. Hendriks-Taylor, L.R., and Darlington, G.J. (1995) Inhibition of cell proliferation by C/EBPα occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res. 23: 4726–4733.CrossRefGoogle Scholar
  79. Heerdt, B.G., Houston, M.A., and Augenlicht, L.H. (1997) Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colinic epithelial cells is linked to mitochondrial function. Cell Growth Differ 8, 523–532.PubMedGoogle Scholar
  80. Hightower, L.E., and Hendershot, L.M. (1997) Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones 2, 1–11.PubMedCrossRefGoogle Scholar
  81. Holmberg, N., Lilius, G., Bailey, J.E., and Biilow, L. (1997) Transgenic tabacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolic production. Nature Biotechnol. 15, 244–247.CrossRefGoogle Scholar
  82. Hovey, A., Bebbington, C.R., and Jenkins, N. (1994) Control of growth and recombinant protein synthesis by heat-shock in a mutant mammalian cell line. Biotechnol, Lett. 16, 215–220.CrossRefGoogle Scholar
  83. Hunt, S.M.N., Pak, S.C.O., Bridges, M.W., Gray, P.P., and Sleigh, M.J. (1997) Chinese hamster ovary cells produce sufficient insulin-like growth factor I to support growth in serum-free medium. Cytotechnology 24, 55–64.CrossRefGoogle Scholar
  84. Itoh, Y., Ueda, H., and Suzuki, E. (1995) Overexpression of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol. Bioeng. 48, 118–122.CrossRefPubMedGoogle Scholar
  85. Jenkins, N., and Hovey, A. (1993) Temperature control of growth and productivity in mutant Chinese hamster ovary cells synthesizing a recombinant protein. Biotechnol. Bioeng. 42, 1029–1036.CrossRefPubMedGoogle Scholar
  86. Jost, C.A., Marin, M.C., and Kaelin, Jr. W.G. (1997) p73 is a human p53 related protein that can induce apoptosis. Nature 389, 191–194.PubMedCrossRefGoogle Scholar
  87. Juan, G., Ardelt, B., Li, Y., Mikulski, S.M., Shogen, K., Ardelt, W., Mittelman, A., and Darzynkiewicz, Z. (1998) Gl arrest of U937 cells by onconase is associated with suppression of cyclin D3 expression, induction of pl6INK4A, p21WAFl/CIPl and p27KIP and decreased pRB phosphorylation. Leukemia 12, 1241–1248.PubMedCrossRefGoogle Scholar
  88. Kanatani, Y., Makishima, M., Asahi, K., Sakurai, A., Takahashi, N., Motoyoshi, K., Nagata, N., and Honma, Y. (1997) Differanisole A, a novel antitumor antibiotic, enhances growth inhibition and differntiation of human myeloid leukemia cells induced by 9-cis retinoic acid. Biochim. Biophys. Acta 1359, 71–79.PubMedCrossRefGoogle Scholar
  89. Kaufmann, H., Mazur, X., Fussenegger, M., and Bailey, J.E. (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol. Bioeng., in press.Google Scholar
  90. Kerkhoff, E., and Rapp, U.R. (1997) Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol Cell Biol. 17, 2576–2586.PubMedGoogle Scholar
  91. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S., and Beppu, T. (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian historn deacetylase. J. Biol. Chem. 268, 22429–22435.PubMedGoogle Scholar
  92. Kim, Y.H., Iida, T., Prochownik, E.V., and Suzuki, E. (1998) Inhibition of c-jun expression in F-MEL cells causes cell cycle arrest and prevention of apoptosis. in O.W. Merten, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 247–254.Google Scholar
  93. Kim, Y.H., Iida, T., Fujita, T., Terada, S., Kitayama, A., Ueda, H., Prochownik, E.V., and Suzuki, E. (1998) Establishement of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible antisense c-Jun gene. Biotechnol. Bioeng. 58, 65–72.PubMedCrossRefGoogle Scholar
  94. Kirchhoff, S., Schaper, F., and Hauser, H. (1993) Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes. Nucleic Acids Res. 21, 2881–2889.PubMedCrossRefGoogle Scholar
  95. Kirchhoff, S., Koromilas, A., Schaper, F., Grashoff, M., Sonenberg, N., and Hauser, H. (1995) IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 11, 439–445.PubMedGoogle Scholar
  96. Kirchhoff, S., Kroger, A., Cruz, H., Tümmler, M., Schaper, F., and Hauser, H. (1996) Regulation of cell growth by IRF-1 in BHK-21 cells. Cvtotechnology 22, 147–156.CrossRefGoogle Scholar
  97. Ko, L.J., and Prives, C. (1996). p53: puzzle and paradigm. Genes Dev. 10, 1054–1072.PubMedCrossRefGoogle Scholar
  98. Koike, M., Elstner, E., Campbell, M.J., Asou, H., Uskokovic, M., Tsuruoka, N., Koeffler, HP. (1997) 19-nor-hexafluoride analogue of vitamin D3: a novel class of potent inhibitors of proliferation of human breast cell lines. Cancer Res. 57, 4545–4550.PubMedGoogle Scholar
  99. Kojima, Y., and Yoshida, F. (1974) Enhanced production of interferon by temperature shift-down from 37°C to 25°C in rabbit cell cultures stimulated with Newcastle disease virus. Japan. J. Microbio!. 18, 217–222.Google Scholar
  100. Kruman, I.I., Gukovskaya, A.S., Petrunyaka, V.V., Beletsky, I.P., and Trpakova, E.S. (1992) Apoptosis of murine BW5147 thyoma cells induced by cold shock. J. Cell Physiol. 153, 112–117.PubMedCrossRefGoogle Scholar
  101. Kundu, M., Sharma, S., De Luca, A., Giordano, A., Rappaport, J., Khalili, K., and Amini, S. (1998) HIV-1 tat elongates the G1-phase and indirectly promotes HIV-1 gene expression in cells of glial origin. J. Biol. Chem. 273, 8130–8136.PubMedCrossRefGoogle Scholar
  102. Kwon, T.K., Buchholz, M.A., Chrest, F.J., and Nordin, A.A. (1996) Staurosporine-induced Gl arrest is associated with the induction and accumulation of cyclin-dependent kinase inhibitors. Cell Growth Diff. 7, 1315–1313.Google Scholar
  103. Kwon, T.K., and Nordin, A.A. (1997) Overexpression of cyclin E and cyclin-dpendent kinase inhibitor (p27Kipl): effect on cell cycle regulation in HeLa cells. Biochem. Biophys. Res. Commun. 238, 534–538.PubMedCrossRefGoogle Scholar
  104. Laad, A.C., Pyatt, R., Gothot, A., Rice, S., McMahel, J., Traycoff, CM., and Srour, E.F. (1997) Orderly process of sequential cytokine stimulation is required for activation and maximal proliferation of primitive human bone marrow CD34+ hematopoietic progenitor cells residing in GO. Blood 90, 658–668.Google Scholar
  105. Lamotte, D., Monaco, L., Jenkins, N., and Marc, A. (1998) Influence of Na-butyrate on the production and sialylation of human interferon-γ by α2,6-sialyltransferase engineered CHO cells, in O.W. Meilen, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 131–133.Google Scholar
  106. Lee, K.H., Sburlati, A., Renner, W.A., and Bailey, J.E. (1996) Deregulated expression of clonded transcription factor E2F-1 in Chinese hamster ovary cells shifts protein patterns and activates growth in protein-free medium. Biotechnol. Bioeng. 50, 273–279.CrossRefPubMedGoogle Scholar
  107. Lepley, D.M., and Pelling, J.C. (1997) Induction of p21/WAFl and Gl cell-cycle arrest by the chemopreventive agent apigenin. Mol. Carcinog. 19, 74–82.PubMedCrossRefGoogle Scholar
  108. Li, Y., Lin, B., Agadir, A., Liu, R., Dawson, M.I., Reed, J.C., Fontana, J.A., Bost, F., Hobbs, P.D., Zheng, Y., Chen, G.Q., Shroot, B., Mercóla, D., and Zhang, X.K. (1998) Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines. Mol. Cell Biol. 18; 4719–4731.PubMedGoogle Scholar
  109. Linke, S.P., Clarkin, K.C., Leonardo, A.D., Tsou, A., and Wahl, G.M. (1996) A reversible, p53-dependent G0/G1 cell-cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10, 934–947.PubMedCrossRefGoogle Scholar
  110. Liu, J.J., Chao, J.R., Jiang, M.C., Ng, S.Y., Yen, J.J.Y., and Yang-Yen, H.F. (1995) Ras transformation results in an elevated level of cyclin Dl and acceleration of Gl progression in NIH 3T3 cells. Mol. Cell Biol. 15, 3654–3663.PubMedGoogle Scholar
  111. Ludwig, A., Tomeczkowski, J., and Kretzmer, G. (1992) Influence of the temperature on the shear stress sensibility of adherent BHK-21 cells. Appl. Microbiol. Biotechnol. 38, 323–327.PubMedCrossRefGoogle Scholar
  112. Marcus, M., Fainsod, A., and Diamond, G. (1985) The genetic analysis of mammalian cell-cycle mutants. Ann. Rev. Genet. 19, 389–421.PubMedCrossRefGoogle Scholar
  113. Marhin, W.W., Chen, S., Facchini, L.M., Fornace, A.J. Jr., and Penn, L.Z. (1997) Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834.PubMedCrossRefGoogle Scholar
  114. Martin, P. (1997) Wound healing-aiming for perfect skin regeneration. Science 276, 75–81.PubMedCrossRefGoogle Scholar
  115. Matsuo, T., and Thiele, C.J. (1998) p27Kipl: a key mediator of retinoic acid induced growth arrest in the SMS-KCNR human neuroblastoma cell line. Oncogene 16, 3337–3343.PubMedCrossRefGoogle Scholar
  116. Matsuoka, M., Tani, K., and Asano, S. (1998) Interferon-alpha-induced Gl phase arrest through up-regulated expression of CDK inhibitors, pl91nd4D and p21Cipl in mouse macrophages. Oncogene 16, 2075–2086.PubMedCrossRefGoogle Scholar
  117. Mazur, X., Fussenegger, M., Renner, W.A., and Bailey, J.E. (1998) Higher productivity of growth-arrested Chinese hamster ovary (CHO) cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol. Prog. 14, 705–713.PubMedCrossRefGoogle Scholar
  118. Mazur, X., Eppenberger, H., Bailey, J.E., and Fussenegger, M. (1999) A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol. Bioeng., submitted.Google Scholar
  119. McCormick, F. (1993) Signal transduction. How receptors turn Ras on. Nature 363, 15–16.PubMedCrossRefGoogle Scholar
  120. McKay, R. (1997) Stem cells in the nervous system. Science 276, 66–71.PubMedCrossRefGoogle Scholar
  121. Meijer, L., Borgne, A., Mulner, O., Chong, J.P., Blow, J.J., Inagaki, N., Inagaki, M., Delcros, J.G., and Moulinoux, J.P. (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536.PubMedCrossRefGoogle Scholar
  122. Meikrantz, W., Gisselbrecht, S., Tam, S.W., and Schlegel, R.A. (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Proc. Nat. Acad. Sci. USA 91, 3754–3758.PubMedCrossRefGoogle Scholar
  123. Meijer, L. (1996) Chemical inhibitors of cyclin-dependent kinases. Trends in Cell Biol. 6, 393–397.CrossRefGoogle Scholar
  124. Meijer, L., and Kim, S.H. (1997) Chemical inhibitors of cyclin-dpendent kinases. Methods in Enzymologv 283, 113–128.Google Scholar
  125. Mercille, S., and Massie, B. (1994) Induction of apoptosis in nutrient-limited cultures of hybridoma cells. Biotechnol. Bioeng. 44, 1140–1154.CrossRefPubMedGoogle Scholar
  126. Michalopoulos, G.K., and DeFrances, M.C. (1997) Liver regeneration. Science 276, 60–66.PubMedCrossRefGoogle Scholar
  127. Miller, R.F., Sokoloski, T.D., Mitscher, L.A., Bonacci, A.C. and Hoener, B. (I973) Use of circular dichroism in analysis of mixtures of tetracycline and 4-epitetracycline and its application to assay of commercial products. J. of Pharmaceutical Sciences 62, 1143–1147.Google Scholar
  128. Miller, W.M., Blanch, H.W., and Wilke, C.R. (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate, and pH. Biotechnol. Bioeng. 32, 974–965.CrossRefGoogle Scholar
  129. Minn, A.J., Boise, L.H., and Thompson, C.B. (1996) Expression of bci-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev. 10, 2621–2631.PubMedCrossRefGoogle Scholar
  130. Mischoulon, D., Rana, B., Bucher, N.L.R., and Farmer, S.R. (1992) Growth-dependent inhibition of CCAAT enhancer-binding protein (C/EBP alpha) gene expression during hepatocytes proliferation in the regenerating liver and in culture. Mol. Cell Biol. 12, 2553–2560.PubMedGoogle Scholar
  131. Mizuno, S., Ohkawara, A., and Suzuki. K. (1989) Defect in the development of thermotolerance and enhanced heat shock protein synthesis in the mouse temperature-sensitive mutant ts85 cells upon moderate hyperthermia. Int. J. Hxperthermia 5, 105–113.CrossRefGoogle Scholar
  132. Moore, A., Donahue, CJ.., Hooley, J., Stocks, D.L., Bauer, K.D., and Mather, J.P. (1995) Apoptosis in CHO cell batch cultures: examination by flow cytometry. Cytotechnology 17, 1–11.CrossRefGoogle Scholar
  133. Moore, A., Mercer, J., Dutina, G., Donahue, C.J., Bauer, K.D., Mather, J.P., Etcheverry, T., and Ryll, T. (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultures. Cytotechnology 23, 47–54.CrossRefGoogle Scholar
  134. Mordente, J.A., Konno, S., Chen, Y., Wu, J.M., Tazaki, H., and Mallouh, C. (1998) The effects of brefeldin A (BFA) on cell cycle progression involving the modulatin of the retinoblastoma protein (pRB) in PC-3 prostate cancer cells. J. Ural. 159, 275–279.CrossRefGoogle Scholar
  135. Morimoto, R.I., and Santoro, M.G. (1998) Stress-inducible responses and heat shock proteins: New pahrmacologic targets for cytoprotection. Nature Biotechnol. 16, 833–838.CrossRefGoogle Scholar
  136. Moyer, J.D., Barbacci, E.G., Iwata, K.K., Arnold, L., Boman, B., Cunningham, A., DiOrio, C, Doty, J., Morin, M.J., Moyer, M.P., Neveu, M., Pollack, V.A., Pustilnik, L.R., Reynolds, M.M., Sloan, D., Theleman, A., and Miller, P. (1997) Induction of apoptosis and cell cycle arrest by CP-358,774 and inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848.PubMedGoogle Scholar
  137. Müller, P.P., Kirchhoff, S., and Hauser, H. (1998) Sustained expression in proliferation controled BHK-21 cells, in O.W. Merten, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 209–214.Google Scholar
  138. Murata, Y., Kudoh, T., Sugiyama, H., Toyoshima, K., and Akiyama, T. (1997) The Wilms tumor suppressor gene WT1 induces Gl arrest and apoptosis in myeloblastic leukemia Ml cells. FEBS Lett. 409, 41–45.PubMedCrossRefGoogle Scholar
  139. Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N., Matsukawa, Y., Tokino, T., Yamagishi, H., Oka, T., Nomura, H., and Sakai, T. (1997) Butyrate activates the WAFl/Cipl gene promoter through Spl sites in a p53-negative human colon cancer cell line. J. Biol.Chem. 272, 22199–22206.PubMedCrossRefGoogle Scholar
  140. Neumann, F., and Krawinkel, U. (1997) Constitutive expression of human ribosomaol protein L7 arrests the cell cycle in Gl and induces apoptosis in Jurkat T-lymphoma cells. Exp. Cell Res. 230, 252–261.PubMedCrossRefGoogle Scholar
  141. News(1998) Bone morphogenic proteins and tissue engineering. Nat. Biotechnol. 14, 242–244.Google Scholar
  142. Newton, K., and Strasser, A. (1998) The Bcl-2 family and cell death regulation. Curr. Opin. Gen. Dev. 8, 68–75.CrossRefGoogle Scholar
  143. Nishimoto, T. (1997) Isolation and characterization of temperature-sensitive mammalian cell cycle mutants. Methods in Enzymol. 283, 292–309.Google Scholar
  144. Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O., and Fujita, J. (1997a) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137, 899–908.PubMedCrossRefGoogle Scholar
  145. Nishiyama, H., Higashitsuji, H., Yokoi, H., Itoh, K., Danno, S., Matsuda, T., and Fujita, J. (1997b) Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204, 115–120.PubMedCrossRefGoogle Scholar
  146. Nitta, M., Okamura, H., Aizawa, S., and Yamaizumi, M. (1997) Heat shock induces transient p53-dependent cell cycle arrest at Gl/S. Oncogene 15, 561–568.PubMedCrossRefGoogle Scholar
  147. Ohnishi, T., Xinjiang, W., Ohnishi, K., and Takahashi, A. (1998) p53-dependent induction of WAF1 by cold shock in human glioblastoma cells. Ongocene 16; 1507–1511.Google Scholar
  148. O’Reilly, L.A., Huang, D.C.S., and Strasser, A. (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 15, 6979–6990.PubMedGoogle Scholar
  149. Oster, T., Thioudellet, C., Chevalot, I., Masson, C., Wellman, M., Marc, A., and Siest, G. (1993) Induction of recombinant gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO chinese hamster cells. Biochem. Biophys. Res. Commun. 193, 406–412.PubMedCrossRefGoogle Scholar
  150. Ota, T., Hanada, K., and Hashimoto, I. (1996) The effect of cold stress on UVB injury in mouse skin and cultured keratinocytes. Photochem. Photobiol. 64, 984–987.PubMedGoogle Scholar
  151. Oda, T., Maeda, M., Odashima, S., Ninomiya-Tsuji, J., and Tatsuka, M. (1997) Gl phase-specific suppression of the Cdk2 activity by ginsenoside Rh2 in cultured murine cells. Life Sci. 60, 39–44.Google Scholar
  152. Pak, S.C.O., Hunt, S.M.N., Bridges, M.W., Sleigh, M.J., and Gray, P.P. (1996) Super CHO-a cell line capable of autocrine growth under fully defined protein-free conditions. Cytotechnology 22, 139–146.CrossRefGoogle Scholar
  153. Pallavicini, M.G., Rosette, C., Reitsma, M., Deteresa, P.S., and Gray, J.W. (1990) Relationship of c-myc gene copy number and gene expression: cellular effects of elevated c-myc protein. J. Cell Physiol. 143, 372–380.PubMedCrossRefGoogle Scholar
  154. Papoutsakis, E.T. (1998) Express together and conquer. Nature Biotechnol. 16, 416–417.CrossRefGoogle Scholar
  155. Passini, CA., and Gouchee, C.F. (1989) Response of a mouse hybridoma cell line to heat shock, agitation and sparging. Biotechnol. Prog. 5, 175–188.Google Scholar
  156. Pennisi, E. (1996) Will a twist of viral fate lead to a new cancer treatment? Science 274, 342–343.PubMedCrossRefGoogle Scholar
  157. Perlman, H., Suzuki, E., Simonson, M., Smith, R.C., and Walsh, K. (1998) GATA-6 induces p21(Cipl) expression and Gl cell cycle arrest. J. Biol. Chem. 273, 13713–13718.PubMedCrossRefGoogle Scholar
  158. Petersen, J.F., Mclntire, L.V., and Papoutsakis, E.T. (1990) Shear sensitivity of hybridoma cells in batch, fed-batch and continuous cultures. Biotechnol. Prog. 6, 114–120.PubMedCrossRefGoogle Scholar
  159. Polyak, K., Kato, J.Y., Solomon, J.M., Sherr, C.J., Massague, J., Roberts, J.M., and Koff, A. (1994a) p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Gene Dev. 8, 9–22.PubMedCrossRefGoogle Scholar
  160. Polyak, K., Lee, M.H., Erdjument-Bromage, H., Koff, A., Roberts, J.M., Tempst, P., and Massague, J. (1994b) Cloning of p21Kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66.PubMedCrossRefGoogle Scholar
  161. Polyak, K., Kato, J.Y., Solomon, M.J., Sherr, C.J., Massagué, J., Roberts, J.M., and Koff, A. (1994) p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell-cycle arrest. Gene and Dev. 8, 9–22.CrossRefGoogle Scholar
  162. Polyak, K., Waldman, T., He, T.-C, Kinzler, K.W., and Vogelstein, B. (1996) Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 10, 1945–1952.PubMedCrossRefGoogle Scholar
  163. Pomahac, B., Svensjo, T., Yao, F., Brown,, H., and Eriksson, E. (1998) Tissue engineering of skin. Crit. Rev. Oral Biol. Med. 9, 333–344.PubMedGoogle Scholar
  164. Prockop, D.J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.PubMedCrossRefGoogle Scholar
  165. Ramirez, O.T., and Mutharasan, R. (1990) Cell cycle-and growth phase-dependent varations in size distribution, antibody productivity and oxygen demand in hybridoma cultures. Bioteclmol. Bioeng. 36, 839–848.CrossRefGoogle Scholar
  166. Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S.J., and White, E. (1992) The adenovirus El A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Acad. Sci USA 89, 7742–7746.PubMedCrossRefGoogle Scholar
  167. Renner, W.A., Lee, K.H., Hatzimanikatis, V., Bailey, J.E., and Eppenberger, H.M. (1995) Recombinant cyclin E expression activates proliferation and obviates surface attachment of Chinese hamster ovary (CHO) cells in protein-free medium. Biotechnol. Bioeng. 47, 476–482.CrossRefPubMedGoogle Scholar
  168. Rees, S., Coote, J., Stables, J., Goodson, S., Harris, S., Lee, M.G. (1996) Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTeclmiques 20, 48–56.Google Scholar
  169. Reuveny, S., Kim, Y.J., Kemp, C.W., and Shiloach, J. (1993) Effect of temperature and oxygen on cell growth and recombinant protein production in insect cell cultures. Appl. Microbiol. Biotechnol. 38, 619–623.PubMedCrossRefGoogle Scholar
  170. Reynisdottir, I., Polyak, K., Iavarone, A., and Massagué, J. (1995) Kip/Cip and Ink4 inhibitors cooperate to induce cell-cycle arrest in response to TGF-β. Genes Dev. 9, 1831–1845.PubMedCrossRefGoogle Scholar
  171. Riggs, M.G., Whittaker, R.G., Neumann, J.R., and Ingram, V.M. (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268, 462–464.PubMedCrossRefGoogle Scholar
  172. Rivard, N., L’Allemain, G., Bartek, J., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 18337–18341.PubMedCrossRefGoogle Scholar
  173. Rohlff, C, Blagosklonny, M.V., Kyle, E., Kesar, A., Kim, I.Y., Zelner, D.J., Hakim, F., Trepel, J., and Bergan, R.C. (1998) Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21. Prostate 37, 51–59.PubMedCrossRefGoogle Scholar
  174. Ross, S., and Englesberg, E. (1993) The competence progression model in CHO-K1 cells: the relationship between protein kinase C and immediate early gene expression in the insulin mitogenic signal. Biochim. Biophys. Acta 1177, 307–317.PubMedCrossRefGoogle Scholar
  175. Roti Roti, J.L., Mackey, M.A., and Higashikubo, R. (1992) The effects of heat shock on cell proliferation. Cell Prolif. 25, 89–99.PubMedGoogle Scholar
  176. Rowan, S., Ludwig, R.L., Haupt, Y., Bates, S., Lu, X., Oren, M., and Vousden, K.H. (1996) Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J. 15, 827–838.PubMedGoogle Scholar
  177. Ryseck, R.P., Hirai, S.I., Yaniv, M., and Bravo, R. (1988) Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature 334, 535–537.PubMedCrossRefGoogle Scholar
  178. Sawai, H., Okazaki, T., Yamamoto, H., Okano, H., Takeda, Y., Tashima, M., Sawada, H., Okuma, M., Ishikura, H., Umehara, H., and Domae, N. (1995) Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J. Biol. Chem. 270, 27326–27331.PubMedCrossRefGoogle Scholar
  179. Sawyers, C.L., McLaughlin, J., Goga, A., Havlik, M., and Witte, O. (1994) The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 77, 121–131.PubMedCrossRefGoogle Scholar
  180. Sekharam, M., Trotti,, A., Cunnick, J.M., and Wu, J. (1998) Suppression of fibroblast cell cycle progression in GI phase by N-acetylcysteine. Toxicol. Appl. Pharmacol. 149, 210–216.PubMedCrossRefGoogle Scholar
  181. Sekiguchi, T., and Hunter, T. (1998) Induction of growth arrest and cell death by overexpression of the cyclin-Cdk inhibitor p21 in BHK21 cells. Oncogene 16, 369–380.PubMedCrossRefGoogle Scholar
  182. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997) Oncogenic ras provokes premature cell senescence associate with accumulation of p53 and pl6INK4a. Cell 88, 593–602.PubMedCrossRefGoogle Scholar
  183. Sewing, A., Wiseman, B., Lloyd, A.C., and Land, H. (1997) High-intensity Raf signal causes cell cycle arrest mediated by p21Cipl. Mol. Cell Biol. 17, 5588–5597.PubMedGoogle Scholar
  184. Singh, R.P., Al-Rubeai, M., Gregory, C.D. and Emery, A.N. (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol. Bioeng. 44, 720–726.CrossRefPubMedGoogle Scholar
  185. Singh, R.P., Fassnacht, D., Perani, A., Simpson, N.H., Goldenzon, C, Pörtner, R., and Al-Rubeai, M. (1998) Modulation of apoptosis by bcl-2 expression following amino acid deprivation and in high cell density perfusion cultures, in O.W. Merten, P. Perrin and J.B. Griffiths (eds.), New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Dordrecht, pp. 235–240.Google Scholar
  186. Sioud, M., Sorensen, D.R. (1998) A nuclease-resistant protein kinase ribozyme blocks glioma cell growth. Nature Biotechnol. 16, 556–561CrossRefGoogle Scholar
  187. Sisken, J.E., Morasca, L., and Kibby, S. (1965) Effects of temperature on the kinetics of the mitotic ceycle of mammalian cells in culture. Exp. Cell Res. 39, 103–116.PubMedCrossRefGoogle Scholar
  188. Smith, M.J., and Prochownik, E.V. (1992) Inhibition of c-jun causes reversible proliferative arrest and withdrawal from the cell cycle. Blood 79; 2107–2115.PubMedGoogle Scholar
  189. Smith, R.C., Branellec, D., Gorski, D.H., Guo, K., Perlman, H., Dedieu, J.F., Pastore, C., Mahfoudi A., Denefle, P., Isner, J.M., and Walsh, K. (1997) p21CIP+-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev. 11, 1674–1689.PubMedCrossRefGoogle Scholar
  190. Sinha, R., and Medina, D. (1997) Inhibition of cdk2 kinase activity by methylselenocysteine in synchronized mouse mammary epithelial tumor cells. Carcinogenesis 18, 1541–1547.PubMedCrossRefGoogle Scholar
  191. Somasundaram, K., Zhang, H., Zeng, Y.X., Houvras, Y., Peng, Y., Zhang, H., Wu, G.S., Licht, J.D., Weber, B.L., and El-Deiri, W.S. (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/cipl. Nature 389, 187–190.PubMedCrossRefGoogle Scholar
  192. Soucek, T., Pusch, O., Wienecke, R., DeClue, J.E., and Hengstschlager, M. (1997) Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gen-2 induces quiescent cells to enter S phase. J. Biol. Chem. 272, 29301–29308.PubMedCrossRefGoogle Scholar
  193. Studer, L., Tabar, V., and McKay, R.D.G. (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neurobiology 1, 290–295.Google Scholar
  194. Sullivan, K.A., Kim, B., Buzon, M., and Feldman, E.L. (1997) Suramin disrupts insulin-like growth factor-II (IGF-II) mediated autocrine growth in human SH-SY5Y neuroblastom cells. Brain Res. 744, 199–206.PubMedCrossRefGoogle Scholar
  195. Sureshkumar, G.K., and Muthaeasan, R. (1991) The influence of temperature on a mouse-mouse hybridoma growth and monoclonal antibody production. Biotechnol. Bioeng. 37, 292–295.CrossRefPubMedGoogle Scholar
  196. Suzuki, E., and Ollis, D.F. (1989) Cell cycle model for antibody production kinetics. Biotechnol. Bioeng. 34, 1398–1402.CrossRefPubMedGoogle Scholar
  197. Suzuki, E., and Ollis, D.F. (1990) Enhanced antibody production at slowed growth rates: experimental demonstration and a simple structured model. Biotechnol. Prog. 6, 231–236.PubMedCrossRefGoogle Scholar
  198. Takagi, M., and Ueda, K. (1994) Comparison of the optimal culture conditions for cell growth and tissue plasminogen activator production by human embryo lung cells on microcarriers. Appl. Microbiol. Biotechnol. 41, 565–570.PubMedCrossRefGoogle Scholar
  199. Tamura, T., Ishihara, M., Lamphier M.S., Tanaka, N., Oishi, I., Aizawa, S., Matsuyama, T., Mak, T.W., Taki, S., and Taniguchi, T. (1995) An IRF-1 dependent pathway of DNA-damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 376, 596–599.PubMedCrossRefGoogle Scholar
  200. Tanaka, H., Takenaka, H., Yamao, F., and Yagura, T. (1998) Aphidicolin induces alterations in Golgi complex and disorganization of microtubules of HeLa cells upon long-term administration. J. Cell Physiol. 176, 602–611.PubMedCrossRefGoogle Scholar
  201. Tanaka, N., Ishihara, M., Lamphier, M.S., Mak, T.W., Aizawa, S., Tokino, T., Oren, M., and Taniguchi, T. (1996) Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816–818.PubMedCrossRefGoogle Scholar
  202. Tanikawa, M., Yamada, K., Tominaga, K., Morisaki, H., Kaneko, Y., Ikeda, K., Suzuki, M., Kiho, T., Tomokiyo, K., Furuta, K., Noyori, R., and Nakanishi, M. (1998) Potent prostaglandin Al analogs that suppress tumor cell growth through induction of p21 and reduction of cyclin E. J. Biol. Chem. 273, 18522–18527.PubMedCrossRefGoogle Scholar
  203. Thieringer, H.A., Jones, P.G., and Inouye, M. (1998) Cold shock and adaptation, Bioessays 20, 49–57.PubMedCrossRefGoogle Scholar
  204. Thomason, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.CrossRefGoogle Scholar
  205. Timchenko, N.A., Wilde, M., Nakanishi, M., Smith, J.R., and Darlington, G.J. (1996) CCAAT/enhancer-binding protein a (C/EBPa) inhibits cell proliferation through the p21 (WAF-1/CIP-l/SDI-l) protein. Genes Dew 10, 804–815.CrossRefGoogle Scholar
  206. Turley, J.M., Ruscetti, F.W., Kim, S.J., Fu, T., Gou, F.V., and Birchenall-Roberts, M.C. (1997) Vitamine E succinate inhibits proliferation of BT-20 human breast cancer cells: increased binding of cyclin A negatively regulates E2F transactivation activity. Cancer Res. 57, 2668–2675.PubMedGoogle Scholar
  207. Turner, R., and Tjlan, R. (1989) Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science 243, 1689–1694.PubMedCrossRefGoogle Scholar
  208. Ueno, T., Ohtawa, K., Mitsui, K., Kodera, Y., Hiroto, M., Matsushima, A., Inada, Y., and Nishimura, H. (1997) Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia 11, 1858–1861.PubMedCrossRefGoogle Scholar
  209. Uhrbom, L., Nister, M., and Westermark, B. (1997) Induction of senescence in human malignant glioma cells by pl6INK4A. Oncogene 15, 505–514.PubMedCrossRefGoogle Scholar
  210. Vazari, C., and Faller, D.V. (1997) A benzo(a)pyrene-induced cell cycle checkpoint resulting in p53-independent Gl arrest in 3T3 fibroblasts. J. Biol. Chem. 272, 2762–2769.CrossRefGoogle Scholar
  211. Vaziri, C., Stice, L., and Faller, D.V. (1998) Butyrate-induced Gl arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 9, 465–474.PubMedGoogle Scholar
  212. Vilcek, J., and Havell, E.A. (1993) Stabilization of interferon messenger RNA activity by treatment of cells with metabolic inhibitors and lowering the incubation temperature. Proc. Natl. Acad. Sci. USA 70, 3909–3913.CrossRefGoogle Scholar
  213. Voellmy, R., Ahmend, A.., Schiller, P., Bromley, P., and Rungger, D. (1995) Isolation and functional analysis of a human 70’000-dalton heat shock protein gene segment. Proc. Natl. Acad. Sci. USA 82: 4949–4953.CrossRefGoogle Scholar
  214. Vogt, A., Sun, J., Quan, Y., Hamilton, A.D., Sebti, S.M. (1997) The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21 (WAF1/CIP1/SDI1) in a p53-independent manner. J. Biol. Chem. 272, 27224–27229.PubMedCrossRefGoogle Scholar
  215. Walker, P.R., Smith, B., Carson, C., Leblanc, J., Sikorska, M., Woodhouse, C.S., and Morgan, A.C. (1997) Induction of apoptosis in neoplastic cells by depletion of vitamin B12. Cell Death Differentiation 4, 233–241.CrossRefGoogle Scholar
  216. Wang, W., Smith, R., Burghardt, R., and Safe, S.H. (1997) 17 beta-Estradiol-mediated growth inhibition of MDA-MB-468 cells stably transfected with the estrogen receptor: cell cycle effects. Mol. Cell Endocrinol. 133, 49–62.PubMedCrossRefGoogle Scholar
  217. Wang, J., and Walsh, K. (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273, 359–361.PubMedCrossRefGoogle Scholar
  218. Wang, X., Thant, A.A., Machida, K.., Hiraiwa, Y., Iwata, H., Matsuda, S., and Hamaguchi, M. (1998) Suppression of cell growth by ectopic expression of N-cadherin. Int. J. Oncol. 12, 1097–1101.PubMedGoogle Scholar
  219. Weidemann, R., Ludwig, A., and Kretzmer, G. (1994) Low temperature cultivation-A step towards process optimization. Cytotechnology 15, 111–116.PubMedCrossRefGoogle Scholar
  220. Willis, J.S. (1987) Cold tolerance in mammalian cells. Symp. Soc. Exp. Biol. 41, 285–309.PubMedGoogle Scholar
  221. Woo, R.A., McLure, K.G., Lees-Miller, S.P., Rancourt, D.E., and Lee, P.W.K. (1998) DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 394, 700–704.PubMedCrossRefGoogle Scholar
  222. Yan, G.Z., and Ziff, E.B. (1997) Nerve growth factor induces transcription of the p21 WAFl/Cipl and cyclin Dl genes in PC 12 cells by activating the Spl transcription factor. J. Neurosci. 17, 6122–6132.PubMedGoogle Scholar
  223. Yoshida, M., Yokokura, H., Hidaka, H., Ikekawa, T., and Saijo, N. (1998) Mechanism of antitumor action of PKC activator, gnidimacrin. Int. J. Cancer 77, 243–250.PubMedCrossRefGoogle Scholar
  224. Zeitler, H., Ko, Y., Glodny, B., Trotzke, G., Appenheimer, M., Sachinidis, A., and Vetter, H. (1997) Cell-cycle arrest in G0/G1 phase of growth factor-induced endothelial celll proliferation by various calcium channel blockers. Cancer Detect. Prev. 21, 332–339.PubMedGoogle Scholar
  225. Zi, X., Feyes, D.K., and Agarwal, R. (1998) Anticarcinogenic effect of a flavonid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of Gl arrest through an increase in Cipl/p21 concomitant with a decreas in kinase activity of cyclin-dependent kinases and associated cyclins. Clin. Cancer Res. 4, 1055–1064.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Institute of Biotechnology, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland

Personalised recommendations