Inhibition of Apoptosis In Mammalian Cell Culture

The Biotechnological Relevance of Limiting Cell Death
  • A. J. Mastrangelo
Part of the Cell Engineering book series (CEEN, volume 1)


When J.F. Enders first used primate cells to produce poliomyelitis virus in 1949, a multi-billion dollar industry was born. The realization that viruses could be attenuated in vitro for use as vaccines initiated attempts to develop large scale cultures of mammalian cells. In the 1970’s, two discoveries led to the expanded use of such cultures: (1) the advent of recombinant DNA technology meant that cell lines could be engineered to overexpress heterologous genes, and (2) the development of hybridoma cell lines provided a system capable of continuously secreting antibodies (Kohler and Milstein, 1975). Today, dozens of products including virus vaccines, antibodies, interferons, immunoregulators, hormones, and growth factors are manufactured by mammalian cells in culture; this number promises only to increase as our understanding of cellular processes grows.


Myeloma Cell Apoptotic Death Large Scale Culture Semliki Forest Virus Maximum Cell Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Rubeai, M., Mills, D., and Emery, A.N. (1990). Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnology 4, 13–28.PubMedGoogle Scholar
  2. Al-Rubeai, M., Singh, R.P., Goldman, M.H., and Emery, A.N. (1995). Death mechanisms of animal cells in conditions of intensive cell-culture systems. Biotechnol. Bioeng. 45, 463–472.Google Scholar
  3. Alnemri, E. S., Robertson, N.M., Femandes, T.F., Croce, CM., and Litwack, G. (1992). Overexpressed full-length human BCL-2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl. Acad. Sci. USA 89, 7295–7299.PubMedGoogle Scholar
  4. Baffy, G., Miyashita, T., Williamson, J.R., and Reed, J.C. (1993). Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J. Biol. Chem. 268, 6511–6519.PubMedGoogle Scholar
  5. Beidler, D. R., Tewari, M., Friesen, P.D., Poirier, G., and Dixit, V.M. (1995). The baculovirus p35 protein inhibits Fas-and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270, 16526–16528.PubMedGoogle Scholar
  6. Bessho, R., Matsubara, K., Kubota, M., Kuwakado, K., Hirota, H., Wakazono, Y., Lin, Y.W., Okuda, A., Kawai, M., Nishikomori, R., and Heike, T. (1994). Pyrrolidine dithiocarbamate, a potent inhibitor of nuclear factor kappa B (NF-kappa B) activation, prevents apoptosis in human promelocytic leukemia HL-60 cells and thymocytes. Biochem. Pharmacol. 48, 1883–9.PubMedGoogle Scholar
  7. Beyette, J., Mason, G.G., Murray, R.A., Cohen, G.M., and Rivett, A.J. (1998). Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes. Biochem. J. 332, 315–320.PubMedGoogle Scholar
  8. Bierau, H., Perani, A., Al-Rubeai, M., and Emery, A.N. (1998). A comparison of intensive cell culture bioreactors operating with Hybridomas modified for inhibited apoptotic response. J. Biotechnol. 62, 195–207.PubMedGoogle Scholar
  9. Bissonnette, R. P., Echeverri, F., Mahboubi, A., and Green, D.R. (1992). Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–556.PubMedGoogle Scholar
  10. Bliem, R., Konoptsky, K., and Katinger, H. (1991). Industrial animal cell reactor systems: Aspects of selection and evaluation. In A. Fiechter (ed.), Advances in Biochemical Engineering/Biotechnology Vol. 44, Springer-Verlag, Berlin, pp. 1–26.Google Scholar
  11. Boise, L. H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G., and Thompson, C.B. (1993). bcl-x, a bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 598–608.Google Scholar
  12. Bortner, C. D., and Cidlowski, J.A. (1996). Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 271, C950–961.PubMedGoogle Scholar
  13. Bossy-Wetzel, E., Newmeyer, D.D., and Green, D.R. (1998). Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37–49.PubMedGoogle Scholar
  14. Bradham, C. A., Zian, T., Streetz, K., Trautwein, C., Brenner, D.A., and Lemasters, J.J. (1998). The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol. Cell. Biol. 18, 6353–6364.PubMedGoogle Scholar
  15. Butler, M. (1987) Animal Cell Technology: Principles and Products, Open University Press, London.Google Scholar
  16. Cartier, J. L., Hershberger, P.A., and Friesen, P.D. (1994). Suppression of apoptosis in insect cells stably transfected with Baculovirus p35: dominant interference by N-terminal sequences p35 1.76. J. Virol. 68, 7728–7737.PubMedGoogle Scholar
  17. Chang, B.S., Minn, A.J., Muchmore, S.W., Fesik, S.W., and Thompson, C.B. (1997). Identification of a novel regulatory domain in Bcl-xL and Bcl-2. EMBO J. 16, 968–977.PubMedGoogle Scholar
  18. Cheng, E. H.-Y., Nicholas, J., Bellows, D.S., Hayword, G.S., Guo, H-G., Reitz, M.S., and Hardwick, J.M. (1997a). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA 94, 690–694.PubMedGoogle Scholar
  19. Cheng, E. H.-Y., Kirsch, D.G., Clem, R.J., Ravi, R., Kastan, M.B., Bedi, A., Ueno, K., and Hardwick, J.M. (1997b). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968.PubMedGoogle Scholar
  20. Chiou, S. K., and White, E. (1998). Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology 244, 108–118.PubMedGoogle Scholar
  21. Chung, J. D., Zabel, C., Sinskey, A.J., and Stephanopoulos, G. (1997). Extension of Sp2/0 hybridoma cell viability through interleukin-6 supplementation. Biotechnol. Bioeng. 55, 439–446.Google Scholar
  22. Clem, R. J., and Miller, L.K. (1994). Control of programmed cell death by the baculovirus genes p35 and lap. Mol. Cell. Biol. 14, 5212–5222.PubMedGoogle Scholar
  23. Clem, R. J., Hardwick, J.M., and Miller, L.K. (1996). Anti-apoptotic genes of baculoviruses. Cell Death Diff. 3, 13–20.Google Scholar
  24. Clem, R. J., Cheng, E. H.-Y., Karp, C.L., Kirsch, D.G., Ueno, K., Takahashi, A., Kastan, M.B., Griffin, D.E., Earnshaw, W.C., Veliuona, M.A., and Hardwick, J.M. (1998). Modulation of cell death by Bcl-xL through caspase interaction. Proc. Natl. Acad. Sci. USA 95, 554–559.PubMedGoogle Scholar
  25. Cossarizza, A., Franceschi, C, Monti, D., Salvioli, S., Bellesia, E., Rivabene, R., Biondo, L., Rainaldi, G., Tinari, A., and Malorni, W. (1995). Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp. Cell Res. 220, 232–240.PubMedGoogle Scholar
  26. Cotter, T. G., and Al-Rubeai, M. (1995). Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 13, 150–154.PubMedGoogle Scholar
  27. Crook, N. E., Clem, R.J., and Miller, L.K. (1993). An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174.PubMedGoogle Scholar
  28. Cummings, M. C., Winterford, C.M., and Walker, N.I. (1997). Apoptosis. Am. J. Surg. Pathol. 21, 88–101.PubMedGoogle Scholar
  29. Datte, R., Kojima, H., Banach, D., Bump, N.J., Talanian, R.V., Alnemri, E.S., Weichselbaum, R.R., Wong, W.W., and Kufe, D.W. (1997). Activation of a CrmA-insenshive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J. Biol. Chem. 272, 1965–1969.Google Scholar
  30. Degli Esposti, M., and McLennan, H. (1998). Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: relevance to ceramide-induced apoptosis. FEBS Lett. 430, 338–342.PubMedGoogle Scholar
  31. Dimmeler, S., Haendeler, J., Rippmann, V., Nehls, M., and Zeiher, A.M. (1996). Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett. 399, 71–74.PubMedGoogle Scholar
  32. DiStefano, D. J., Mark, G.E., and Robinson, D.K. (1996). Feeding of nutrients delays apoptotic death in fed-batch cultures of recombinant NS0 myeloma cells. Biotechnol. Lett. 18, 1067–1072.Google Scholar
  33. Dobbelstein, M., and Shenk, T. (1996). Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J. Virol. 70, 6479–6485.PubMedGoogle Scholar
  34. Duckett, C. S., Nava, V.E., Gedrich, R.W., Clem, R.J., VanDongen, J.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M., and Thompson, C.B. (1996). A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694.PubMedGoogle Scholar
  35. Duckett, C. S., Li, F., Wang, Y., Tomaselli, K.J., Thompson, C.B., and Armstrong, R.C. (1998). Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol. Cell. Biol. 18, 608–615.PubMedGoogle Scholar
  36. Duval, D., Demangel, C., Munier-Jolain, K., Miossec, S., and Geahel, I. (1991). Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. Influence of the amino acid supply. Biotechnol. Bioeng. 38, 561–570.Google Scholar
  37. Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science 122, 501–504.PubMedGoogle Scholar
  38. Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science 130, 432–437.PubMedGoogle Scholar
  39. Enari, M., Hug, H., and Nagata, S. (1995). Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81.PubMedGoogle Scholar
  40. Fassnacht, D., Rössing, S., Franěk, F., Al-Rubeai, M., and Pörtner, R. (1998). Effect of bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotechnology 26, 219–225.Google Scholar
  41. Fernandez, A., Marin, M.C., McDonnell, T.J., and Ananthaswamy, H.N. (1994). Differential sensitivity of normal and Ha-ras-transformed C3H mouse embryo fibroblasts to tumor necrosis factor: induction of bcl-2, c-myc, and manganese Superoxide dismutase in resistant cells. Oncogene 9, 2009–2017.PubMedGoogle Scholar
  42. Franěk, F., and Dolníková, J. (1991a). Nucleosomes occuring in protein-free hybridoma cell cultures. Evidence for programmed cell death. FEBS Lett. 248, 285–287.Google Scholar
  43. Franěk, F., and Dolníková, J. (1991b). Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: effect of nutrient concentration. Cytotechnology 7, 33–38.PubMedGoogle Scholar
  44. Franěk, F., and Chládkova-Srámková, K. (1995). Apoptosis and nutrition: involvement of amino acid transport system in repression of hybridoma cell death. Cytotechnology 18, 113–117.Google Scholar
  45. Franěk, F., and Srámková, K. (1996a). Cell suicide in starving hybridoma culture: survival-signal effect of some amino acids. Cytotechnology 21, 81–89.Google Scholar
  46. Franěk, F., and Srámková, K. (1996b). Cell suicide in starving hybridoma culture: survival-signal effecto fo some amino acids. Cytotechnology 21, 81–89.Google Scholar
  47. Fulda, S., Susin, S.A., Kroemer, G., and Debatin, K.M. (1998). Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res. 58, 4453–4460.PubMedGoogle Scholar
  48. Fussenegger, M., Schlatter, S., Dätwyler, S., Mazur, X., and Bailey, J.E. (1998). Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotech. 16, 468–472.Google Scholar
  49. Gagliardini, V., Fernandez, P.-A., Lee, R.K.K., Drexler, H.C.A., Rotello, R.J., Fishman, M.C., and Yuan, J. (1994). Prevention of vertebrate neuronal death by the crmA gene. Science 262, 826–828.Google Scholar
  50. Gerschenson, L. E., and Rotello, R. J. (1992). Apoptosis: a different type of cell death. FASEB J. 6, 2450–2455.PubMedGoogle Scholar
  51. Grandgirard, D., Studer, E., Monney, L., Belser, T., Fellay, I., Bomer, C., and Michel, M.R. (1998). Alphaviruses induce apoptosis in Bel-2-overexpressing cells: evidence for a caspase-mediated proteolytic inactivation of Bcl-2. EMBO J. 17, 1268–1278.PubMedGoogle Scholar
  52. Greenlund, L. J. S., Deckwerth, T.L., and Johnson, E.M. Jr. (1995). Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal cell death. Neuron 14, 303–315.PubMedGoogle Scholar
  53. Hardwick, J. M. (1997). Virus-induced apoptosis. Adv. Pharmacol. 41, 295–336.PubMedGoogle Scholar
  54. Hardwick, J. M. (1998). Viral interference with apoptosis. Semin. Cell Dev. Biol. 9, 339–349.PubMedGoogle Scholar
  55. Hashimoto, S., Ishii, A., and Yonehara, S. (1991). The Elb oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int. Immunol. 17, 2835–2843.Google Scholar
  56. Hehner, S. P., Hofmann, T.G., Ratter, F., Dumont, A., Droge, W., and Schmitz, M.L. (1998). Tumor necrosis factor-alpha-induced cell killing and activation of transcription factor NF-kappaB are uncoupled in L929 cells. J. Biol. Chem. 273, 18117–18121.PubMedGoogle Scholar
  57. Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., and Rickinson, A. (1993). Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. USA 90, 8479–8483.PubMedGoogle Scholar
  58. Hockenbery, D. M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L., and Korsmeyer, S.J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251.PubMedGoogle Scholar
  59. Hortelano, S., Dallaporta, B., Zamzami, N., Hirsch, T., Susin, S.A., Marzo, I., Bosca, L., and Kroemer, G. (1997). Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 410, 373–377.PubMedGoogle Scholar
  60. Ichas, F., and Mazat, J.P. (1998). From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochim. Biophys. Acta 1366, 33–50.PubMedGoogle Scholar
  61. Ink, B. S., Gilbert, C.S., and Evan, G.I. (1995). Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus ElB 19K genes. J. Virol. 69, 661–668.PubMedGoogle Scholar
  62. Itoh, Y., Ueda, H., and Suzuki, E. (1995). Overexpression of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotech. Bioeng. 48, 118–122.Google Scholar
  63. Jacobson, M. D., and Raff, M.C. (1995). Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374, 814–816.PubMedGoogle Scholar
  64. Jacobson, M. D. (1996). Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 21, 83–86.PubMedGoogle Scholar
  65. Jobses, I., Marten, D., and Tramper, J. (1991). Lethal events during gas sparging in animal cell culture. Biotechnol. Bioeng. 37, 484–490.Google Scholar
  66. Kerr, J. F. R., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.PubMedGoogle Scholar
  67. Kluck, R. M., Bossy-Wetzel, E., Green, D.R., and Newmeyer, D.D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.PubMedGoogle Scholar
  68. Köhler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.PubMedGoogle Scholar
  69. Kroemer, G., Zamzami, N., and Susin, S.A. (1997). Mitochondrial control of apoptosis. Immunol. Today 18, 44–51.PubMedGoogle Scholar
  70. Levine, B., Huang, Q., Isaacs, J.T., Reed, J.C., Griffin, D.E., and Hardwick, J.M. (1993). Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361, 739–742.PubMedGoogle Scholar
  71. Liao, C. L., Lin, Y.L., Wang, J.J., Huang, Y.L., Yeh, C.T., Ma, S.H., and Chen, L.K. (1997). Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J.Virol. 71, 5963–5971.PubMedGoogle Scholar
  72. Lin, K.-L, Lee, S.-H., Narayanan, R., Baraban, J.M., Hardwick, J.M., and Ratan, R.R. (1995). Thiol agents and bcl-2 identify an alphavirus-induced apoptotic pathway that requires activation of the transcription factor NF-kappa B. J. Cell Biol. 131, 1149–1161.PubMedGoogle Scholar
  73. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J, MacKenzie, A., and Korneluk, R.G. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353.PubMedGoogle Scholar
  74. Lundstrom, K., Pralong, W., and Martinou, J.-C. (1997). Anti-apoptotic effect of Bcl-2 overexpression in RIN cells infected with Semliki Forest virus. Apoptosis 2, 189–191.PubMedGoogle Scholar
  75. Malomi, W., Rivabene, R., Santini, M.T., and Donelli, G. (1993). N-acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett. 327, 75–8.Google Scholar
  76. Marchetti, P., Castedo, M., Susin, S.A., Zamzami, N., Hirsch, T., Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996). Mitochondrial permeability transition is a central coordinating event of apoptosis. J.Exp. Med. 184, 1155–1160.PubMedGoogle Scholar
  77. Martin, S. J., Newmeyer, D.D., Mathias, S., Farschon, D.W., Wang, H.G., Reed, J.C., Kolesnick, R.N., and Green, D.R. (1995). Cell-free reconstitution of Fas-, UV radiation-and ceramide-induced apoptosis. EMBO J. 14, 5191–5200.PubMedGoogle Scholar
  78. Martinou, I., Fernandez, P.-A., Missotten, M., White, E., Allet, B., Sadoul, R., and Martinou, J.-C. (1995). Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J. Cell Biol. 128, 201–208.PubMedGoogle Scholar
  79. Marzo, I., Brenner, C., and Kroemer, G. (1998). The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed. Pharmacother. 52, 248–251.PubMedGoogle Scholar
  80. Mastrangelo, A. J., Hardwick, J.M., and Betenbaugh, M.J. (1996). Bcl-2 inhibits apoptosis and extends recombinant protein production in cells infected with Sindbis viral vectors. Cytotechnology 22, 169–178.Google Scholar
  81. Mastrangelo, A. J., and Betenbaugh, M.J. (1998). Overcoming apoptosis: new methods for improving protein expression systems. Trends Biotechnol. 16, 88–95.PubMedGoogle Scholar
  82. Matthews, C. C., and Feldman, E.L. (1996). Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hypertonic induced programmed cell death. J. Cell. Physiol. 166, 323–331.PubMedGoogle Scholar
  83. Mayer, M., and Noble, M. (1994). N-Acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc. Natl. Acad. Sci. USA 91, 7496–7500.PubMedGoogle Scholar
  84. McCarthy, N. J., Hazlewood, S.A., Huen, D.S., Rickinson, A.B., and Williams, G.T. (1996). The Epstein-Barr virus gene BHRF1, a homologue of the cellular oncogene Bcl-2, inhibits apoptosis induced by gamma radiation and chemotherapeutic drugs, in S. Gupta and J.J. Cohen (eds.) Mechamisms of Lymphocyte Activation and Immune Regulation VI: Cell Cycle and Programmed Cell Death in the Immune System, Plenum Press, New York, pp. 83–97.Google Scholar
  85. McColl. K. S., He, H., Zhong, H., Whitacre, C.M., Berger, N.A., and Distelhorst, C.W. (1998). Apoptosis induction by the glucocorticoid hormone dexamethasone and the calcium-ATPase inhibitor thapsigargin involves Bcl-2 regulated caspase activation. Mol. Cell. Endocrinol. 139, 229–238.PubMedGoogle Scholar
  86. McGowan, A. J., Femandes, R.S., Samali, A., and Cotter, T.G. (1996). Anti-oxidants and apoptosis. Biochem. Soc. Trans. 24, 229–33.PubMedGoogle Scholar
  87. McLachlin, J. R., and Miller, L.K. (1997). Stable transformation of insect cells to coexpress a rapidly selectable marker gene and an inhibitor of apoptosis. In Vitro Cell. Dev. Biol. 33, 575–579.Google Scholar
  88. Mercille, S., Johnson, M., Lemieux, R., and Massie, B. (1994). Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNasel. Biotechnol. Bioeng. 43, 833–846.Google Scholar
  89. Mercille, S., and Massie, B. (1994a). Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 44, 1140–1154.Google Scholar
  90. Mercille, S., and Massie, B. (1994b). Induction of apoptosis in oxygen-deprived cultures of hybridoma cells. Cytotechnology 15, 117–128.PubMedGoogle Scholar
  91. Mercille, S., and Massie, B. (1998). Apoptosis-resistant NS/0-E1B-19K myeloma cells exhibit increased viability and chB43 monoclonal antibody productivity using cell cycle modulators. Cytotechnology In Press.Google Scholar
  92. Mercille, S., and Massie, B. (1999). Apoptosis-resistant ElB-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture. Biotechnol. Bioeng. In Press.Google Scholar
  93. Mercille, S., Jolicoeur, P., Gervais, C., Paquette, D., Mosser, D.D., and Massie, B. (1999). Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/0 myeloma cells transfected with the E1B-19K adenoviral gene. Biotechnol. Bioeng. In Press.Google Scholar
  94. Mignotte, B., and Vayssiere, J.-L. (1998). Mitochondria and apoptosis. Eur. J. Biochem. 252, 1–15.PubMedGoogle Scholar
  95. Miller, L. K. (1997). Baculovirus interaction with host apoptotic pathways. J. Cell. Physiol. 173, 178–182.PubMedGoogle Scholar
  96. Mitchell-Logean, C., and Murhammer, D.W. (1997). bcl-2 expression in Spodoptera frugiperda Sf-9 and Trichoplusia ni BTI-Tn-5Bl-4 insect cells: effect on recombinant protein expression and cell viability. Biotechnol. Bioeng. 56, 380–388.Google Scholar
  97. Miura, M., Friedlander, R.M., and Yuan, J. (1995). Tumor necrosis factor-induced apoptosis is mediated by a Crm-A-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA 92, 8318–8322.PubMedGoogle Scholar
  98. Miyashita, T., and Reed, J.C. (1992). bcl-2 gene transfer increases relative resistance of S49.1 and WEH 17.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 52, 5407–5411.PubMedGoogle Scholar
  99. Murray, K., Ang, C.-E., Gull, K., Hickman, J.A., and Dickson, A.J. (1996). NSO myeloma cell death: influence of bcl-2 overexpression. Biotechnol. Bioeng. 51, 298–304.Google Scholar
  100. Nava, V. E., Rosen, A., Veliuona, M.A., Clem, R.J., Levine, B., and Hardwick, J.M. (1998). Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J. Virol. 72, 452–459.PubMedGoogle Scholar
  101. Oh, S. K. W., Vig, P., Chua, F.K.F, Teo, W.K., and Yap, M.S.G. (1993). Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol. Bioeng. 42, 601–610.Google Scholar
  102. Oltvai, Z. N., Milliman, C.L., and Korsmeyer, S.J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74, 609–619.PubMedGoogle Scholar
  103. Ozturk, S. S., and Palsson, B.O. (1991). Effect of medium osmolarity on hybridoma growth, metabolism and antibody production. Biotechnol. Bioeng. 37, 989–993.Google Scholar
  104. Pastorino, J. G., Synder, J.W., Serroni, A., Hoek, J.B., and Farber, J.L. (1993). Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J. Biol. Chem. 268, 13791–13798.PubMedGoogle Scholar
  105. Pastorino, J. G., Simbula, G., Yamamoto, K., Glascott, P.A. Jr., Rothman, R.J., and Farber, J.L. (1996). The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J. Biol. Chem. 271, 29792–29798.PubMedGoogle Scholar
  106. Perani, A., Singh, R.P., Chauhan, R., and Al-Rubeai, M. (1998). Variable functions of bcl-2 in mediating bioreactor stress-induced apoptosis in hybridoma cells. Cytotechnology In Press.Google Scholar
  107. Perreault, J., and Lemieux, R. (1993). Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas. Cytotechnology 13, 99–105.PubMedGoogle Scholar
  108. Pervaiz, S., Hirpara, J.L., and Clement, M.V. (1998). Caspase proteases mediate apoptosis induced by anticancer agent preactivated MC540 in human tumor cells. Cancer Lett. 128, 11–22.PubMedGoogle Scholar
  109. Petronini, P. G., Urbani, S., Alfieri, R., Borghetti, A.F., and Guidotti, G.G. (1996). Cell susceptibility to apoptosis by glutamine deprivation and rescue: survival and apoptotic death in cultured lymphoma-leukemia cell lines. J. Cell Physiol. 169, 175–185.PubMedGoogle Scholar
  110. Prior, C. P., Doyle, K.R., Duffy, S.A., Hope, J.A., Moellcring, BJ., Prior, G.M., Scott, R.W., and Tolbert, W.R. (1989). The recovery of highly purified biopharmaceuticals from perfusion cell culture bioreactors. J. Parent Sci. Tech. 43, 15–23.Google Scholar
  111. Pugachev, K. V., and Frey, T.K. (1998). Rubella virus induces apoptosis in cultured cells. Virology 250, 359–370.PubMedGoogle Scholar
  112. Qi, X. M., He, H., Zhong, H., and Distelhorst, C.W. (1997). Baculovirus p35 and Z-VAD-fmk inhibit thapsigargin-induced apoptosis of breast cancer cells. Oncogene 15, 1207–1212.PubMedGoogle Scholar
  113. Qin, S., Minami, Y., Kurosaki, T., and Yamamura, H. (1997). Distinctive functions of Syk and Lyn in mediating osmotic stress-.and ultraviolet C irradiation-induced apoptosis in chicken B cells. J. Biol. Chem. 272, 17994–17999.PubMedGoogle Scholar
  114. Rabizadeh, S., LaCount, DJ., Friesen, P.D., and Bredesen, D.E. (1993). Expression of the baculovinis p35 gene inhibits mammalian neural cell death. J. Neurochem. 61, 2318–2321.PubMedGoogle Scholar
  115. Reddy, S., and Miller, W.M. (1994). Effects of abrupt and gradual osmotic stress on antibody production and content in hybridoma cells that differ in production kinetics. Biotechnol. Prog. 10, 165–173.PubMedGoogle Scholar
  116. Reed, J. C. (1994). Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124, 1–6.PubMedGoogle Scholar
  117. Rossé, T., Olivier, R., Monney, L., Rager, M, Conus, S., Felley, I., Jansen, B., and Borner, C. (1998). Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496–499.PubMedGoogle Scholar
  118. Sarin, A., Wu, M.L., and Henkart, P.A. (1996). Different interleukin-1 beta converting enzyme (ICE) family protease requirements for the apoptotic death of T lymphocytes triggered by diverse stimuli. J. Exp. Med. 184, 2445–2550.PubMedGoogle Scholar
  119. Scallan, M. F., Allsopp, T.E., and Fazakerley, J.K. (1997). bcl-2 acts early to restrict Semliki Forest virus replication and delays virus-induced programmed cell death. J. Virol. 71, 1583–1590.PubMedGoogle Scholar
  120. Schafer, R., Karbach, K., and Hoppe, J. (1998). Multiple intracellular pathways interfere with the activation of a CPP32-like protease induced by serum deprivation of AKR-2B cells. Exp. Cell Res. 240, 28–39.PubMedGoogle Scholar
  121. Sheshagiri, S., and Miller, L.K. (1997). Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1. Proc. Natl. Acad. Sci. USA 94, 13606–13611.Google Scholar
  122. Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y. (1995). Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-x,. Nature 374, 811–813.PubMedGoogle Scholar
  123. Simpson, N., Milner, A.N., and Al-Rubeai, M. (1997). Preventaion of hybridoma cell death by bcl-2 during sub-optimal culture conditions. Biotechnol. Bioeng. 54, 1–16.Google Scholar
  124. Simpson, N. H., Singh, R.P., Perani, A., Goldenzon, C., and Al-Rubeai, M. (1998). In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 59, 90–98.PubMedGoogle Scholar
  125. Singh, R. P., Al-Rubeai, M., Gregory, C.D., and Emery, A.N. (1994). Cell death in bioreactors: A role for apoptosis. Biotechnol. Bioeng. 44, 720–726.Google Scholar
  126. Singh, R. P., Emery, A.N., and Al-Rubeai, M. (1996). Enhancement of survivability of mammalian cells by overexpression of the apoptosis-suppressor gene bcl-2. Biotechnol. Bioeng. 52, 166–175.Google Scholar
  127. Singh, R. P., Finka, G., Emery, A.N., and Al-Rubeai, M. (1997). Apoptosis and its control in cell culture systems. Cylotechnology 23, 87–93.Google Scholar
  128. Slater, A. F. G., Kimland, M., Jiang, S.A., and Orrenius, S. (1995). Constitutive nuclear NF-kappa-B/rel DNA-binding activity of rat thymocytes is increased by stimuli that promote apoptosis, but not inhibited by pyrrolidine dithiocarbamate. Biochem. J. 312, 833–838.PubMedGoogle Scholar
  129. Strasser, A., and Anderson, R.L. (1995). Bcl-2 and thermotolerance cooperate in cell survival. Cell Growth Differ. 6, 799–805.PubMedGoogle Scholar
  130. Sugimoto, A., Friesen, P.D., and Rothman, J.H. (1994). Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans. EMBO J. 13, 2023–2028.Google Scholar
  131. Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G. (1996). Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184, 1331–1341.PubMedGoogle Scholar
  132. Suzuki, E., Terada, S., Ueda, H., Fujita, T., Komatsu, T., Takayama, S., and Reed, J.C. (1997). Establishing apoptosis resistant cell lines for improving protein productivity of cell culture. Cytotechnology 23, 55–59.Google Scholar
  133. Takayama, S., Cazals-Hatem, D.L., Kitada, S., Tanaka, S., Miyashita, T., and Hovey, L.R. (1994). Evolutionary conservation of function among mammalian, avian, and viral homologs of the Bcl-2 oncoprotein. DNA Cell Biol. 13, 679–692.PubMedGoogle Scholar
  134. Talley, A. K., Dewhurst, S., Perry, S.W., Dollard, S.C., Gummuluru, S., Fine, S.M., New, D., Epstein, L.G., Gendelman, H.E., and Gelbard, H.A. (1995). Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-Acetylcysteine and the genes bcl-2 and crmA. Mol. Cell. Biol. 15, 2359–2366.PubMedGoogle Scholar
  135. Tarodi, B., Subramanian, T., and Chinnadurai, G. (1994). Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology 201, 404–407.PubMedGoogle Scholar
  136. Terada, S., Fukuoka, K., Fujita, T., Komatsu, T., Takayama, S., Reed, J.C., and Suzuki, E. (1997). Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotechnology 25, 17–23.PubMedGoogle Scholar
  137. Tewari, M., and Dixit, V.M. (1995). Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270, 3255–3260.PubMedGoogle Scholar
  138. Tewari, M., Quan, L.T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Slavesen., G.S., and Dixit, V.M. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a Crm-A-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polyermase. Cell 81, 801–809.PubMedGoogle Scholar
  139. Thomas, J. N. (1990). Mammalian cell physiology, A. Lubiniecki (ed.), Bioprocess Technology, Vol. 10, Marcel Dekker, New York. pp. 93–145.Google Scholar
  140. Thornberry, N. A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312–1316.PubMedGoogle Scholar
  141. Tsai, J. C., Jain, M., Hsieh, J.M., Lee, W.S., Yoshizumi, M., Patterson, C., Perrella, M.A., Cooke, C., Wand, H., Haber, E., Schlegel, R., and Lee, M.E. (1996). Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J. Biol. Chem. 271, 3667–3670.PubMedGoogle Scholar
  142. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., and Croce, CM. (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14:18) chromosome translocation. Science 226, 1097–1099.PubMedGoogle Scholar
  143. Vander Heiden, M. G., Chandel, N.S., Williamson, E.K., Schumacher, P.T., and Thompson, C.B. (1997). Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637.Google Scholar
  144. Vaux, D. L., and Weissman, I.L. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442.PubMedGoogle Scholar
  145. Vomastek, V., and FranSk, F. (1993). Kinetics of development of spontaneous apoptosis in B cell hybridoma cultures. Immunol. Lett. 35, 19–24.PubMedGoogle Scholar
  146. Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. (1994). Ich-1 and ICE/ced-3 related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750.PubMedGoogle Scholar
  147. Waring, P., and Beaver, J. (1996). Cyclosporin A rescues thymocytes from apoptosis induced by very low concentrations of thapsigargin: effects on mitochondrial function. Exp. Cell Res. 227, 264–276.PubMedGoogle Scholar
  148. White, E., Sabbatini, P., Debbas, M, Wold, W.S.M., Rusher, D.I., and Gooding, L.R. (1992). The 19-kilodalton Adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor a. Mol. Cell. Biol. 12, 2570–2580.PubMedGoogle Scholar
  149. Wolfe, J. T., Ross, D., and Cohen, G.M. (1994). A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett. 352, 58–62.PubMedGoogle Scholar
  150. Wong, G. H. W., Elwell, J.H., Oberley, L.W., and Goeddel, D.V. (1989). Manganous Superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58, 923–931.PubMedGoogle Scholar
  151. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T-I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cylochrome c from mitochondria blocked. Science 275, 1129–1132.PubMedGoogle Scholar
  152. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-lβ-converting enzyme. Cell 75, 641–652.PubMedGoogle Scholar
  153. Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S.A., Masse, B., and Kroemer, G. (1996a). Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 384, 53–57.PubMedGoogle Scholar
  154. Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Castedo, M., and Kroemer, G. (1996b). Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183, 1533–1544.PubMedGoogle Scholar
  155. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., and Kroemer, G. (1997). Mitochondrial implications in accidental and programmed cell death: apoptosis and necrosis. J. Bioeng. Biomembr. 29, 185–193.Google Scholar
  156. Zhivotovsky, B., Burgess, D.H., and Orrenius, S. (1996). Proteases in apoptosis. Experimentia 52, 968–978.Google Scholar
  157. Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Døskeland, S.O. (1998). Injected cytochrome c induces apoptosis. Nature 391, 449–450.PubMedGoogle Scholar
  158. Zhou, Q., Snipas, S., Orth, K., Muzio, M., Dixit, V.M., and Salvesen, G.S. (1997). Target protease specificty of the viral serpin crmA. J. Biol. Chem. 272, 7797–7800.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. J. Mastrangelo
    • 1
  1. 1.Department of Chemical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations