Skip to main content

The Regulation of Apoptosis in Animal Cells

  • Chapter
Cell Engineering

Part of the book series: Cell Engineering ((CEEN,volume 1))

Abstract

It has now been established that physiologically controlled cell death is an integral and indispensable component of metazoan life. Normal development necessitates a measured amount of cell deletion as does homeostatic maintenance and protection of the organism from pathogens. The process whereby a cell orchestrates its own destruction is now referred to as apoptosis or programmed cell death (PCD). Apoptosis is a phrase originally employed to denote a collective set of features observed in dying cells (Kerr et al, 1972). These include cell shrinkage, chromatin condensation and membrane blebbing. These visible features reflect an orderly internal process of cellular dismantling, packaging and surface alterations which make the cell recognisable and safely digestible for neighbouring or phagocytic cells. In contrast to necrosis (or pathological cell death), where cell contents are released, apoptosis does not induce an inflammatory response and it is a relatively unobtrusive exit from life.

These authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B. and Stark, G.R. (1998) The p53 network, J. Biol. Chem. 273, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. and Weissman, I.L. (1997) Bc1-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice, Cell 89, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  • Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W. and Yuan, J. (1996) Human ICE/CED-3 protease nomenclature, Cell 87, 171.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini, G., Adida, C. and Altieri, D.C. (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma, Nat.Med. 3, 917–921.

    Article  PubMed  CAS  Google Scholar 

  • An, B. and Ping Dou, Q. (1996) Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta converting enzyme like protease, Cancer Res. 56, 438–442.

    PubMed  CAS  Google Scholar 

  • Armstrong, J.F., Kaufman, M.H., Harrison, D.J. and Clark, A.R. (1995) High-frequency developmental abnormalities in p53 deficient mice, Curr. Biol. 5, 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi, A. and Dixit, V.M. (1998) Death receptors: signaling and modulation, Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  • Baffy, G., Miyashita, T., Wiliamson, T.R. and Reed, J.C. (1993) Apoptosis induced by withdrawl of interleukin-3 from an IL-3 dependent hematopoetic cell line is associated with a repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production, J. Biol. Chem. 268, 6511–6519.

    PubMed  CAS  Google Scholar 

  • Barde, Y.A. (1989) Trophic factors and neuronal survival, Neuron 2, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron, L., Perez, G.I., Macdonald, G., Shi, L., Sun, Y., Jurisicova, A., Varmuza, S., Latham, K.E., Flaws, J.A., Salter, J.C.M., Hara, H., Moskowitz, M.A., Li, E., Greenberg, A., Tilly, J.L. and Yuan, J. (1998) Defects in regulation of apoptosis in caspase-2 deficient mice, Genes Dev. 12, 1304–1314.

    PubMed  CAS  Google Scholar 

  • Blandino, G., Scardigli, R., Rizzo, M.G., Crescenzi, M., Soddu, S. and Sacchi, A. (1995) Wild type p53 modulates apoptosis of normal, IL-3 deprived, hematopoitic cells, Oncogene 10, 731–737.

    PubMed  CAS  Google Scholar 

  • Boise, L.H., Minn, A.J., Noel, P.J., June, C.H., Accavitti, M.A., Lindsten, T. and Thompson, C.B. (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bc1-XL, Immunity 3, 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Bokoch, G.M. (1998) Caspase mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ. 5, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death, Cell 85, 803–815.

    Article  PubMed  CAS  Google Scholar 

  • Boldin, M.P., Varfolomeev, E.E., Pancer, Z., Mett, I.L., Camonis, J.H. and Wallach, D. (1995) A novel protein that interacts with the death domain ofFas/APO1 contains a sequence motif related to the deathdomain, J. Biol. Chem. 270, 7795–7798.

    Article  PubMed  CAS  Google Scholar 

  • Borner, C., Martinou, I., Mattmann, C., Irmler, M., Schaerer, E., Martinou, J.C. and Tschopp, J.J. (1994) The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis, J. Cell Biol 126, 1059–1068.

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel, E., Newmeyer, D.D. and Green, D.R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Bratton, D.L., Fadok, V.A., Richter, D.A., Kailey, J.M., Guthrie, L.A. and Henson, P.M. (1997) Appearance of phosphatidyltserine on apoptotic cells requires calcium mediated non-specific flip-flop and is enhanced by loss of the aminophspholipid translocase, J. Biol. Chem. 272, 26159–26165.

    Article  PubMed  CAS  Google Scholar 

  • Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C, Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A., Miller, L.K. and Wong, W.W. (1995) Inhibition of ICE family proteases by baculovirus anti-apoptotic protein P35, Science 269, 1885–1888.

    Article  PubMed  CAS  Google Scholar 

  • Caelles, C., Helmberg, A. and Karin, M. (1994) p53-dependant apoptosis in the absence of transcriptional activation of p53-target genes, Nature 370, 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, M.K., Krahling, S.A., Williamson, P. and Schengel, R.A. (1997) The role of CD14 in the recognition and phagocytosis of apoptotic thymocytes by macrophages, Mol. Cell. Biol. 8 (Suppl.), 147a.

    Google Scholar 

  • Carmody, R.J., Cotter, T.G. and McKenna, S.L. (1998) Programmed Cell Death (Apoptosis), In: Encyclopedia of Animal and Plant Cell Technology Ed: Miller, W.M. In press. Wiley, USA.

    Google Scholar 

  • Carmody, R.J., Costa-Pereira, A.P., McKenna, S.L., and Cotter, T.G. (1998) Detection of molecular events during apoptosis by flow cytometry, In: Aging: Methods and protocols, Strehler, B. (ed), In press. The Humana Press Inc., USA.

    Google Scholar 

  • Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J. and Rosen, A. (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269, 30757–30760.

    PubMed  CAS  Google Scholar 

  • Chang, B.S., Minn, A.J., Muchmore, S.W., Fesik, S.W. and Thompson, C.B. (1997) Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2, EMBO J. 16, 968–977.

    Article  PubMed  CAS  Google Scholar 

  • Chao, D.T. and Korsmeyer, S.J. (1998) BCL-2 family: regulators of cell death, Annu. Rev. Immunol. 16, 395–419.

    Article  PubMed  CAS  Google Scholar 

  • Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., Yen, J.J. and Yang-Yen, H.F. (1998) mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response, Mol. Cell. Biol. 8, 4883–4898.

    Google Scholar 

  • Cheng, E.H.-.Y., Kirsch, D.G., Clem, R.J., Ravi, R., Kastan, M.B., Bedi, A., Ueno, K. and Hardwick, J.M. (1997) Conversion of Bcl-2 to a Bax like death effector by caspases, Science 278, 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M., O’Rourke, K., Lane, B.R. and Dixit, V.M. (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death, Science 275, 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M., O’Rourke, K., Yu, G.L., Lyons, R.H., Garg, M., Duan, D.R., Xing, L., Gentz, R., Ni, J. and Dixit, V.M. (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95, Science 274, 990–992.

    Article  PubMed  CAS  Google Scholar 

  • Clem, R.J., Hardwick, J.M. and Miller, L.K. (1996) Anti-apoptotic genes of baculoviruses, Cell Death Differ. 3, 9–16.

    PubMed  CAS  Google Scholar 

  • Cohen, J.J. and Duke, R.C. (1984) Glucocorticoid activation of a calcium-dependant endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132, 38–42.

    PubMed  CAS  Google Scholar 

  • Cory, S., Harris, A.W. and Strasser, A. (1994) Insights from transgenic mice regarding the role of bcl-2 in normal and neoplastic lymphoid cells, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 345, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Costa-Pereira, A.P. and Cotter, T.G. (1998) Camptothecin sensitises androgen independant prostate cancer cells to anti-Fas induced apoptosis, Br. J. Cancer In press.

    Google Scholar 

  • Cosulich, S. and Clark, P. (1996) Apoptosis: Does stress kill? Curr. Biol. 6, 1586–1588.

    Article  PubMed  CAS  Google Scholar 

  • Cotter, T.G. and Martin, S.J: Techniques in apoptosis: A users guide, Portland Press, London, (1996).

    Google Scholar 

  • Coucouvanis, E. and Martin, G.R. (1995) Signals for death and survival: a two step mechanism for cavitation in the verterbrate embryo, Cell 83, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M.E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell 91, 231–241.

    Article  PubMed  CAS  Google Scholar 

  • del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. and Nunez, G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt, Science 278, 687–689.

    Article  PubMed  Google Scholar 

  • Devitt, A., Moffatt, O.D., Raykundalia, C., Capra, J.D., Simmons, D.L. and Gregory, C.D. (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells, Nature 392, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Downward, J. (1998) Ras signalling and apoptosis, Curr. Opin. Genet. Dev 8, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Duan, H. and Dixit, V.M. (1997) RAIDD is a new ‘death’ adaptor molecule, Nature 385, 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Vandongen, I.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M. and Thomspon, C.B. (1996) A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors, EMBO J. 15, 2685–2694.

    PubMed  CAS  Google Scholar 

  • Dudek, H., Robert Datta, S., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R. and Greenberg, M.E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt, Science 275, 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Duvall, E., Wyllie, A.H. and Morris, R.G. (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis), Immunology 56, 351–358.

    PubMed  CAS  Google Scholar 

  • Ellis, H.M. and Horvitz, H.R. (1986) Genetic control of programmed cell death in the nematode C.elegans, Cell 44, 817–829.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.E., Yuan, J.Y. and Horvitz, H.R. (1991) Mechanisms and functions of cell death, Ann. Rev. Cell Biol. 7, 663–698.

    PubMed  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated Dnase that degrades DNA during apoptosis, and its inhibitor ICAD, Nature 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Talanian, R.V., Wong, W.W. and Nagata, S. (1996) Sequential activation of ICE-like proteases during Fas-mediated apoptosis, Nature 380, 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Erhardt, P., Tomaselli, K.J. and Cooper, G.M. (1997) Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases, J. Biol. Chem. 272, 15049–15052.

    Article  PubMed  CAS  Google Scholar 

  • Evan, G. and Littlewood, T. (1998) A matter of life and death, Science 281, 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, V.A., Bratton, D.L., Frasch, S.C., Warner, M.L. and Henson, P.M. (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes, Cell Death Differ. 5, 551–562.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148, 2207–2216.

    PubMed  CAS  Google Scholar 

  • Falasca, L., Bergamini, A., Serafino, A., Balabaud, C. and Dini, L. (1996) Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes, Exp. Cell Res. 224, 152–162.

    Article  PubMed  CAS  Google Scholar 

  • Fanidi, A., Harrington, E.A. and Evan, G.I. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes, Nature 359, 554–556.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri, T., Litwack, G. and Alnemri, E.S. (1994) CPP32 a novel human apoptotic protein with homology to C.elegans cell death ced-3 and mammalian interleukin-1B converting enzyme, J. Biol. Chem. 269, 30761–30764.

    PubMed  CAS  Google Scholar 

  • Fesus, L., Thomazy, V. and Falus, A. (1987) Induction and activation of tissue transglutaminase during programmed cell death, FEBS Lett. 224, 104–108.

    Article  PubMed  CAS  Google Scholar 

  • Furtwangler, J.A., Hall, S.H. and Koskinen, M.L. (1985) Sutural morphogenesis in the mouse calvaria: the role of apoptosis, Acta. Anal 124, 74–80.

    CAS  Google Scholar 

  • Glucksman, A. (1951) Cell deaths in normal vertebrate ontogeny, Biol. Rev. Camb. Philos. Soc. 26, 59–86.

    Google Scholar 

  • Goldring, M.B. and Goldring, S.R. (1991) Cytokines and cell growth control, Crit. Rev. Eukaryot. Gene. Expr. 1, 301–26.

    PubMed  CAS  Google Scholar 

  • Golstein, P. (1997) Cell death: TRAIL and its receptors, Curr. Biol. 7, R750–R753.

    Article  PubMed  CAS  Google Scholar 

  • Goltsev, Y.V., Kovalenko, A.V., Arnold, E., Varfolomeev, E.E., Brodianskii, V.M. and Wallach, D. (1997) CASH, a novel caspase homologue with death effector domains, J. Biol. Chem. 272, 19641–19644.

    Article  PubMed  CAS  Google Scholar 

  • Gouin, A., Camu, W., Bloch-Gallego, E., Mettling, C. and Henderson, C.E. (1993) Growth and survival factors of spinal motorneurones, C. R. Seances. Soc. Biol. Fil. 187, 47–61.

    PubMed  CAS  Google Scholar 

  • Granville, D.J., Carthy, C.M., Yang, D., Hunt, D.W.C. and McManus (1998) Interaction of viral proteins with host cell death machinery, Cell Death Differ. 5, 653–659.

    Article  PubMed  CAS  Google Scholar 

  • Green, D.R. and Reed, J.C. (1998) Mitochondria and Apoptosis, Science, 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T. (1996) Programmed cell death: A way of life for plants, Proc. Natl. Acad. Sci. USA 93, 12094–12097.

    Article  PubMed  CAS  Google Scholar 

  • Gruss, H.J. and Dower, S.K. (1995) Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas, Blood. 85, 3378–3404.

    PubMed  CAS  Google Scholar 

  • Hacker G and Vaux DL. (1995) A sticky buisness, Curr. Biol. 5, 622–624.

    Article  PubMed  CAS  Google Scholar 

  • Hacker, G. and Vaux, D.L. (1994) Viral, worm and radical implications for apoptosis, Trends Biochem. Sci. 19, 99–100.

    Article  Google Scholar 

  • Hahne, M., Rimoldi, D., Schroter, M., Romero, P., Schreier, M., French, L.E., Schneider, P., Bornand, T., Fontana, A., Lienard, D., Cerottini, J. and Tschopp, J. (1996) Melanoma cell expression of Fas(Apo-l/CD95) ligand: implications for tumor immune escape, Science 274, 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  • Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S.A., Lowe, S.W., Penninger, J.M. and Mak, T.W. (1998) Differential requirement for Caspase 9 in apoptotic pathways in vivo, Cell 94, 339–352.

    Article  PubMed  CAS  Google Scholar 

  • Haldar, S., Basu, A. and Croce, C.M. (1998) Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells, Cancer Res. 58, 1609–1615.

    PubMed  CAS  Google Scholar 

  • Hara, H., Friedlander, R.M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z., Shimizu-Sasamata, M., Yuan, J. and Moskowitz, M.A. (1997) Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage, Proc. Natl. Acad. Sci. USA 94, 2007–2012.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, E.A., Bennett, M.R., Fanidi, A. and Evan, G.I. (1994) c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines, EMBO J. 13, 3286–3295.

    PubMed  CAS  Google Scholar 

  • Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. and Oren, M. (1995) Induction of apoptosis in HeLa cells by transactivation deficient p53, Genes Dev. 9, 2170–2183.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O. and Horvitz, H.R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1-2, Cell 76, 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H., Shu, H.B., Pan, M.G. and Goeddel, D.V. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell 84, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H., Xiong, J. and Goeddel, D.V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell 81, 495–504.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S., Vincenz, C., Ni, J., Gentz, R. and Dixit, V.M. (1997) I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis, J. Biol. Chem. 272, 17255–17257.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y., Benedict, M.A., Wu, D., Inohara, N. and Nunez, G. (1998) Bc1-XL interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation, Proc. Natl. Acad. Sci USA. 95, 4386–4391.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain, Nature 384, 638–641.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R.A., Sendtner, M. and Thoenen, H. (1993) Members of several gene families influence survival of rat motoneurones in vitro and in vivo, J. Neurosci.Res. 15, 663–671.

    Article  Google Scholar 

  • Hughes, F.M. and Cidlowski, J.A. (1994) Apoptotic DNA degradation: evidence for novel enzymes, Cell Death Differ. 1, 11–17.

    PubMed  CAS  Google Scholar 

  • Humke, E.W., Ni, J. and Dixit, V.M. (1998) ERICE, a novel FLICE-activatable caspase, J. Biol. Chem. 273, 15702–15707.

    Article  PubMed  CAS  Google Scholar 

  • Ichas, F. and Mazat, J.P. (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state, Biochim. Biophys. Acta. 1366, 33–50.

    Article  PubMed  CAS  Google Scholar 

  • Inohara, N., Ding, L., Chen, S. and Nunez, G. (1997) harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L), EMBO J. 16, 1686–1694.

    Article  PubMed  CAS  Google Scholar 

  • Inohara, N., Ekhterae, D., Garcia, I., Carrio, R., Merino, J., Merry, A., Chen, S., Nunez, G. (1998) Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 andBcl-XL, J. Biol. Chem. 273, 8705–8710.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Deng, X., Carr B. and May, W.S. (1997) Bcl-2 phosphorylation required for anti-apoptosis function, J. Biol. Chem. 272, 11671–11673.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.D., Weil, M. and Raff, M.C. (1997) Programmed cell death in animal development, Cell 88, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Jurgensmeier, J.M., Xie, Z., Deveraux, Q,., Ellerby, L., Bredesen, D. and Reed, J.C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. USA. 95, 4997–5002.

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J. and Evan, G. (1997) Suppression of c-Myc induced apoptosis by Ras signalling through PI(3)K and PKB, Nature 385, 544–548.

    Article  PubMed  CAS  Google Scholar 

  • Kelekar, A. and Thompson, C.B. (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis, Trends Cell Biol. 8, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Kelekar, A., Chang, B.S., Harlan, J.E., Fesik, S.W. and Thompson, C.B. (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL, Mol. Cell. Biol. 17, 7040–7046.

    PubMed  CAS  Google Scholar 

  • Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N. and Hay, N. (1997) The PI3-kinase / Akt signaling pathway delivers an anti-apoptotic signal, Genes Dev. 11, 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.F.R., Searle, J., Harmon, B.V. and Bishop, C.J. (1987) Apoptosis. In: Perspectives on mammalian cell death (ed. C.S. Potten), pp 93–119 Oxford University Press, Oxford, New York, Tokyo.

    Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H. and Currie, A.H. (1972) Apoptosis, a basic biological phenomenon with wider implications in tissue kinetics, Br. J. Cancer 26, 239–245.

    PubMed  CAS  Google Scholar 

  • Kharbanda, S., Pandey, P., Ren, R., Mayer, B., Zon, L. and Kufe, D. (1995a) c-Abl activation regulates induction of the SEKl/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine, J. Biol. Chem. 270, 30278–30281.

    Article  PubMed  CAS  Google Scholar 

  • Kharbanda, S., Ren, R., Pandey, P., Shafman, T.D., Feller, S.M., Weichselbaum, R.R. and Kufe, D.W. (1995b) Activation of the c-Abl tryosine kinase in the stress response to DNA damaging agents, Nature 376, 785–788.

    Article  PubMed  CAS  Google Scholar 

  • Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. and Downward, J. (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway, EMBO J. 16, 2783–2793.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S. and Miyajima, A. (1997) Raf/MAPK and rapamycin sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3 dependent hematopoietic cells, Oncogene 15, 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T., Yokota, T., Arai, K. and Miyajima, A. (1995) Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors, EMBO J. 14, 266–275.

    PubMed  CAS  Google Scholar 

  • Kluck, R.M., Bossy-Wetzel, E., Green. D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science, 275, 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos, V.E., Cayouette, M.H., Berkemeier, L.R., Clatterbuck, R.E., Price, D.L. and Rosenthal, A. (1994) Neurotrophin4/5 is a trophic factor for mammalian facial motor neurons, Proc. Natl. Acad. Sci. USA 91, 3304–3308.

    Article  PubMed  CAS  Google Scholar 

  • Koseki, T., Inohara, N., Chen, S. and Nunez, G. (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases, Proc. Natl Acad. Sci. USA 95, 5156–60.

    Article  PubMed  CAS  Google Scholar 

  • Koury, M.J. and Bondurant, M.C. (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science 248, 378–381.

    Article  PubMed  CAS  Google Scholar 

  • Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P. and Craig, R.W. (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2, Proc. Natl. Acad. Sci. USA. 90, 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis, Annu. Rev. Physiol. 60, 619–642.

    Article  PubMed  CAS  Google Scholar 

  • Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y.o.n.g., Taya, C., Karasuyama, H., Su, M.S.-.S., Rakic, P. and Flavell, R.A. (1998) Reduced apoptosis and cytochrome c mediated caspase activation in mice lacking caspase 9, Cell 94, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S. and Flavell, R.A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme, Science 267, 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  • Kuida, K., Zheng, T.S., Na, S., Kuan, C.-.Y., Yang, D., Karasuyama, H., Rakic, P. and Flavell, R.A. (1996) Decreased apoptosis in the brain and lethality in CPP32-deficient mice, Nature 384, 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Kulik, G., Klippel, A. and Weber, M.J. (1997) Antiapoptotic signalling by the insulin like growth factor I receptor, phosphatidylinositol 3-kinase and Akt, Mol Cell Biol 17, 1595–1606.

    PubMed  CAS  Google Scholar 

  • Kunstle, G., Leist, M., Uhlig, S., Revesz, L., Feifel, R., MacKenzie, A. and Wendel, A. (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF alpha, Immunol. Lett. 55, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R.L. and Distelhorst, C.W. (1994) Evidence that bcl-2 represses apoptosis by regulating endoplasmic recticulum associated calcium fluxes, Proc. Natl. Acad. Sci.USA. 91, 6569–6573.

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. and Earnshaw, W.C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  • Leist, M., Single, B., Castoldi, A.F., Kuhnle, S. and Nicotera, P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis, J. Exp. Med. 185, 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, G.R. (1996) Neurotrophins and the specification of neuronal phenotype, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 405–411.

    Article  CAS  Google Scholar 

  • Lewinson, D. and Silbermann, M. (1992) Chondroclasts and endothelial cells collaborate in the process of cartilage resorption, Anat. Rec. 233, 504–514.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfield, J. and etal (1995) Mice deficient in IL-1B converting enzyme are defective in production of mature IL-1B and resistant to endotoxic shock, Cell 80, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade, Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Lin, E.Y., Orlofsky, A., Berger, M.S. and Prystowsky, M.B. (1993) Characterization of Al, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2, J. Immunol. 151, 1979–1988.

    PubMed  CAS  Google Scholar 

  • Lin, Y. and Benchimol, S. (1995) Cytokines inhibit p53-mediated apoptosis but not p53-mediated Gl arrest, Mol. Cell. Biol. 15, 6045–6054.

    PubMed  CAS  Google Scholar 

  • Lindsay, R.M. (1996) Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 365–373.

    Article  CAS  Google Scholar 

  • Ling, Y.H., Tornos, C. and Perez-Soler, R. (1998) Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis, J. Biol, Chem. 273, 18984–18991.

    Article  CAS  Google Scholar 

  • Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Chertonhorvat, G., Farahani, R., Mclean, M., Ikeda, J.E., Mackenzie, A. and Korneluk, R.G. (1996) Supression of apoptosis in mammalian cells by NAIP and a related family of IAP genes, Nature 379, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. and Efstratiadis, A. (1993) Mice carrying null mutations of the genes encoding insulin like growth factor I (IGF-I) and type I IGF receptor (IGF-IR), Cell 75, 59–72.

    PubMed  CAS  Google Scholar 

  • Lotem, J. and Sachs, L. (1995) A mutant p53 antagonizes the deregulated c-myc- mediated enhancement of apoptosis and decrease in leukemogenicity, Proc. Natl Acad. Sci. USA 92, 9672–9676.

    Article  PubMed  CAS  Google Scholar 

  • Lowery, P.A. (1995) Hematopoietic stem cell cytokine response, J. Cell Biochem. 58, 410–415.

    Article  Google Scholar 

  • Luciani, M.F. and Chimini, G. (1996) The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death, EMBO J. 15, 226–235.

    PubMed  CAS  Google Scholar 

  • Mancini, M., Anderson, B.O., Caldwell, E., Sedghinasab, M., Paty, P.B. and Hockenbery, D.M. (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line, J. Cell Biol. 138, 449–469.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, M., Nicholson, D.W., Roy, S., Thornberry, N.A., Peterson, E.P., Casciola-Rosen, L.A. and Rosen, A. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling, J. Cell Biol. 140, 1485–1495.

    Article  PubMed  CAS  Google Scholar 

  • Mandrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C. and et al (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress activated protein kinase in the presence of the constitutively active GTP binding protein Racl, J. Biol. Chem. 272, 25238–25242.

    Article  Google Scholar 

  • Maraskovsky, E., O’Reilly, L.A., Teepe, M., Corcoran, L.M., Peschon, J.J. and Strasser, A. (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/-mice, Cell 89, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, S.M., Matiba, B., Armandola, E.A. and Krammer, P.H. (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells, J. Cell Biol. 137, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Marsters, S.A., Sheridan, J.P., Pitti, R.M., Brush, J., Goddard, A. and Ashkenazi, A. (1998) Identification of a ligand for the death-domain-containing receptor Apo3, Curr. Biol. 8, 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Marsters, S.A., Sheridan, J.P., Pitti, R.M., Huang, A., Skubatch, M., Baldwin, D., Yuan, J., Gurney, A., Goddard, A.D., Godowski, P. and Ashkenazi, A. (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain, Curr. Biol. 7, 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.J., Reutelingsperger, C.P.M., McGahon, A.J., Radar, J.A., van Schie, R.C., LaFace, D.M. and Green D.R. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl, J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  • Mathias, S., Dressier, K.A. and Kolesnick, R.N. (1991) Characterization of a ceramide activated protein kinase: stimulation by tumor necrosis factor alpha, Proc. Natl. Acad. Sci. USA 88, 10009–10013.

    Article  PubMed  CAS  Google Scholar 

  • Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.C. and Arkinstall, S. (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl, J. Biol. Chem. 272, 25238–25242.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, J.V. and Cotter, T.G. (1997) Cell shrinkage: a role for potassium and sodium ion flux, Cell. Death. Differ. 4, 756–770.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, S.L. and Cotter, T.G. (1997) Functional aspects of apoptosis in haematopoiesis and consequences of failure, Adv. Cancer Res. 71, 121–164.

    PubMed  CAS  Google Scholar 

  • Minn, A.J., Velez, P., Schendel, S.L., Liang, H., Muchmore, S.W., Fesik, S.W., Fill, M. and Thompson, C.B. (1997) Bcl-XL forms an ion channel in sythetic lipid membranes, Nature, 385, 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Minshall, C, Arkins, S., Freund, G.G. and Kelley, K.W. (1996) Requirement for phosphatidylinositol 3 kinase to protect hemopoietic progenitors against apoptosis depends upon the extracellular survival factor, J. Immunol. 156, 939–947.

    PubMed  CAS  Google Scholar 

  • Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta converting enzyme, a mammalian homologue of the C. elegans cell death gene ced-3, Cell 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, T. and Reed, J.C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell 80, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, T., Harigai, M., Hanada, M. and Reed, J.C. (1994) Identification of a p53-dependant negative response element in the bcl-2 gene, Cancer Res. 54, 3131–3135.

    PubMed  CAS  Google Scholar 

  • Mongkolsapaya, J., Cowper, A.E., Xu, X.N., Morris, G., McMichael, A.J., Bell, J.I. and Screaton, G.R. (1998) Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL, J. Immunol. 160, 3–6.

    PubMed  CAS  Google Scholar 

  • Morgan, S.E. and Kastan, M.B. (1997) p53 and ATM: Cell cycle, cell death, and cancer, Adv. Cancer Res. 71, 1–25.

    PubMed  CAS  Google Scholar 

  • Morris, R.G., Duvall, E., Hargreaves, A.D. and Wyllie, A.H. (1984) Hoermoneinduced cell death. 2. Surface changes in thymocytes undergoing apoptosis, Am. J. Pathol. 115, 426–436.

    PubMed  CAS  Google Scholar 

  • Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S-C, and Fesik, S.W. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature 381, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S. and Dixit V.M. (1998) An induced proximity model for caspase-8 activation, J. Biol. Chem. 273, 2926–2930.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. (1997) Apoptosis by death factor, Cell 88, 3553–65.

    Article  Google Scholar 

  • Nicholson, D.W. and Thornberry, N.A. (1997) Caspases: killer proteases, Trends Biochem. Sci. 22, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, L., Strasser, A., O’Reilly, L.A., Hausmann, G., Adams, J.M., Cory, S. and Huang, D.C. (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis, EMBO J. 17, 384–395.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, R. (1998) Survival factors and apoptosis, Adv.Biochem.Eng.Biotech. 62, 137–166.

    CAS  Google Scholar 

  • Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R. and Sikorska, M.(1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50kb fragments prior to or in the absence of internucleosomal fragmentation, EMBO J. 12, 3670–3684.

    Google Scholar 

  • Ockel, M., von-Schack, D., Schropel, A., Dechant, G., Lewin, G.R. and Barde, Y.A. (1996) Roles of neurotrophin-3 during early development of the peripheral nervous system, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 383–387.

    Article  CAS  Google Scholar 

  • Oltvai, Z.N. and Korsmeyer, S.J. (1994) Checkpoints of dueling dimers foil death wishes, Cell 79, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell 74, 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R.W. (1991) Cell death during development of the nervous system, Annu. Rev. Neurosci. 14, 453–501.

    Article  PubMed  CAS  Google Scholar 

  • Orth, K., O’Rourke, K., Salvesen, G.S. and Dixit, V.M. (1996) Molecular ordering of mammalian CED-3/ICE-like proteases, J. Biol. Chem. 271, 20977–20980.

    Article  PubMed  CAS  Google Scholar 

  • Owen-Schaub, L.B., Zhang, W., Cusack, J.C., Angelo, L.S., Santee, S.M., Fujiwara, T., Roth, J.A., Deisseroth, A.B., Zhang, W.-.W., Kruzel, E. and etal (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression, Mol Cell Biol 15, 3032–3040.

    PubMed  CAS  Google Scholar 

  • Pan, G., Ni, J., Yu, G., Wei, Y.F. and Dixit, V.M. (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling, FEBS Lett. 424, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Pan, G., O’Rourke, K. and Dixit, V.M. (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex, J. Biol. Chem. 273, 5841–5845.

    Article  PubMed  CAS  Google Scholar 

  • Pan, G., O’Rourke, K., Chinnaiyan, A.M., Gentz, R., Ebner. R., Ni, J. and Dixit, V.M. (1997) The receptor for the cytotoxic ligand TRAIL, Science 276, 111–113.

    Article  PubMed  CAS  Google Scholar 

  • Penfold, P.L. and Provis, J.M. (1986) Cell death in the development of the human retina: phagocytosis of pyknotic and apoptotic bodies by retinal cells, Graefes. Arch. Clin. Exp. Ophthalmol. 224, 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Porter, A.G., Ng, P. and Janicke, R.U. (1997) Death substrates come alive, BioEssays 19, 501–507.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M.C. (1992) Social controls on cell survival and cell death, Nature 356, 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S. and White, E. (1992) The adenovirus El A proteins induce apoptosis which is inhibited by the E1B 19-kDa and Bcl-2 proteins, Proc. Natl. Acad. Sci. USA 89, 7742–7746.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.C. (1997) Double identity for proteins of the bcl-2 family, Nature, 387, 773–776.

    Article  PubMed  CAS  Google Scholar 

  • Reichel, M.B., Ali, R.R., D’Esposito, F., Clark, A.R., Luthert, P.J., Battacharya, S.S. and Hunt, D.M. (1998) High frequency of persistant hyperplastic primary vitreous and cataracts in p53 deficient mice, Cell Death Differ. 5, 156–162.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Tarduchy-G, Collins-MK, Garcia-I and Lopez-Rivas, A. (1992) Insulin like growth factor-I inhibits apoptosis in IL-3 dependent hemopoietic cells, J. Immunol. 149, 535–540.

    PubMed  CAS  Google Scholar 

  • Rosse, T., Olivier, R., Monney, l., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c, Nature 391, 496–499.

    Article  PubMed  CAS  Google Scholar 

  • Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. and Goeddel, D.V. (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins, Cell 83, 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  • Rotonda, J., Nicholson, D.W., Fazil, K.M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E.P., Rasper, D.M., Ruel, R., Vaillancourt, J.P., Thornberry, N.A. and Becker JW (1996) The three dimensional structure of apopain/CPP32, a key mediator of apoptosis, Nat. Struct. Biol. 3, 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, A., Tamai, K., Guan, X., Ioannou, P., Crawford, T.O., de Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G. and MacKenzie, A. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell 80, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E. and Reed, J.C. (1994) Anchorage dependance, Integrins, and apoptosis, Cell 77, 477–478.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, J.J., Prochownik, E., Gottlieb, C.A., Apel, I.J., Merino, R., Nunez, G. and Clarke, M.F. (1994) c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle, Proc. Natl. Acad. Sci. USA. 91, 5878–5882.

    Article  PubMed  CAS  Google Scholar 

  • Ryeom, S.W., Sparrow, J.R. and Silverstein, R.L.(1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium, J. Cell. Sci. 109, 387–395.

    PubMed  CAS  Google Scholar 

  • Sabbatini, P., Lin, J., Levine, A.J. and White, E. (1995) Essential role for p53-mediated treanscription in El A-induced apoptosis, Genes Dev. 9, 2184–2192.

    Article  PubMed  CAS  Google Scholar 

  • Sah, V.P., Attardi, L.D., Mulligan, G.J., Williams, B.O., Bronson, R.T. and Jacks, T. (1995) A subset of p53-deficient embryos exhibit exencephaly, Nature Genet. 10, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature 391, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J., Dransfield, I., Hogg, N. and Haslett, C. (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature 343, 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J., Hogg, N., Ren, Y. and Haslett, C. (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, J. Clin. Invest. 90, 1513–1522.

    Article  PubMed  CAS  Google Scholar 

  • Schendel, S.L., Xie, Z., Montai, M.O., Matsuyama, S., Montai, M., Reed, J.C. (1997) Channel formation by antiapoptotic protein Bcl-2, Proc. Natl Acad. Sci. USA. 94, 5113–5118.

    Article  PubMed  CAS  Google Scholar 

  • Sell, C., Baserga, R. and Rubin, R. (1995) Insulin like growth factor I (IGF-1) and the IGF-I receptor prevent etoposide induced apoptosis, Cancer Res. 55, 303–306.

    PubMed  CAS  Google Scholar 

  • Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., Goddard, A.D., Godowski, P. and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors, Science 277, 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Smithgall, T.E. (1998) Signal transduction pathways regulating hematopoietic differentiation, Pharmacological Reviews 50, 1–19.

    PubMed  CAS  Google Scholar 

  • Song, Q., Kees-Miller, S.P., Kumar, S., Zhang, N., Chan, D.W., Smith, G.C.M., Jackson, S.P., Alnemri, E.S., Litwack, G., Khanna, K.K. and Lavin, M.F. (1996) DNA dependent protein kinase catalytic subunit: a target for an ICE like protease in apoptosis, EMBO J. 15, 3238–3246.

    PubMed  CAS  Google Scholar 

  • Srinivasula, S.M., Ahmad, M., Ottilie, S., Bullrich, F., Banks, S., Wang, Y., Fernandes-Alnemri, T., Croce, C.M., Litwack, G., Tomaselli, K.J., Armstrong, R.C. and Alnemri, E.S. (1997) FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFRl-induced apoptosis, J. Biol Chem. 272, 18542–18545.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X.J., Wang, L.M., Zhang, Y., Yenush, L., Myers, M.J. J.r., Glasheen, E., Lane, W.S., Pierce, J.H. and White, M.F. (1995) Role of IRS-2 in insulin and cytokine signalling, Nature 377, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Susin, S.A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.G., Geley, S., Fassy, F., Reed, J.C. and Kroemer, G. (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M. and Kroemer, G. (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 184, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia, L.A. and Goeddel, D.V. (1992) Two TNF receptors, Immunol. Today 13, 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J.L., Schroter, M., Scaffidi, C., Krammer, P.H., Peter, M.E. and Tschopp, J. (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature 386, 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry, N.A. and Lazebnik, Y. (1998) Caspases: Enemies within, Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  • Ting, A.T., Pimentel-Muinos, F.X. and Seed, B. (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis, EMBO J. 15, 6189–6196.

    PubMed  CAS  Google Scholar 

  • Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L. and Vaux, D.L. (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor associated factors, Proc. Natl. Acad. Sci. USA 93, 4974–4978.

    Article  PubMed  CAS  Google Scholar 

  • Van de Craen, M., Van Loo, G., Pype, S., Van Criekinge, W., Van den brande, I., Molemans, F., Fiers, W., Declercq, W. and Vandenabeele, P. (1998) Identification of a new caspase homologue: caspase 14, Cell Death Differ. 5, 838–846.

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden, M.G, Chandel, N.S., Williamson, E.K., Schumacker, P.T. and Thompson, C.B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria, Cell 91, 627–637.

    Article  Google Scholar 

  • Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S. and al, e.t. (1996) Requirement for ceramide initiated SAPK/JNK signalling in stress induced apoptosis, Nature 380, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Verhoven, B., Schengel, R.A. and Williamson, P. (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes, J. Exp. Med. 182, 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, H., Degli-Esposti, M.A., Johnson, R.S., Smolak, P.J., Waugh, J.Y., Boiani, N., Timour, M.S., Gerhart, M.J., Schooley, K.A., Smith, C.A., Goodwin, R.G. and Rauch, C.T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL, EMBO J. 16, 5386–5397.

    Article  PubMed  CAS  Google Scholar 

  • Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammil, L.D. and et al (1994) Crystal structure of the cysteine protease interleukin-1B converting enzyme: a (p20/pl0)2 homodimer, Cell 78, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.R., Pandey, S. and Sikorska, M. (1995) Degradation of chromatin in apoptotic cells, Cell Death. Differ. 2, 97–104.

    PubMed  CAS  Google Scholar 

  • Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L. and Korsmeyer, S.J. (1996) BID: a novel BH3 domain-only death agonist, Genes Dev. 10, 2859–2869.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Miura, M., Jung, Y.-.k., Zhu, H., Li, E. and Yuan, J. (1998) Murine Caspase-11, an ICE-interacting protease is essential for the activation of ICE, Cell 92, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Wen, L.-.P., Madani, K., Martin, G.A. and Rosen, G.D. (1998) Proteolytic cleavage of Ras GTPase activating protein during apoptosis, Cell Death Differ. 5, 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Widmann, C., Gibson, S. and Johnson, G.L. (1998) Caspase dependant cleavage of signaling proteins during apoptosis, J. Biol. Chem. 273, 7141–7147.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity 3, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.P., Black, A.F., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A. and Livingston, D.L. (1994) Structure and mechanism of interleukin-lB converting enzyme, Nature 370, 270–275.

    Article  PubMed  CAS  Google Scholar 

  • Woo, M., Hakem, R., Soengas, M.S., Duncan, G.S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S.A., Senaldi, G., Howard, T., Lowe, S.W. and Mak, T.W. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes, Genes Dev. 12, 806–819.

    PubMed  CAS  Google Scholar 

  • Wu, Y.C. and Horvitz, H.R. (1998a) The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters, Cell 93, 951–960.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y.C. and Horvitz, H.R. (1998b) C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180, Nature 392, 501–504.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  • Xue, D. and Horvitz, H.R. (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein, Nature 377, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Khosravi-Far, R., Chang, H.Y. and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis, Cell 89, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, W.C., Pompa, J.L., McCurrach, M.E., Shu, H.B., Elia, A.J.,, Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W.S., Lowe, S.W., Goeddel, D.V. and Mak, T.W.(1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis, Science 279, 1954–1958.

    Article  PubMed  CAS  Google Scholar 

  • Yonish-Rouach, E., Deguin, V., Zaitchouk, T., Breugnot, C., Mishal, Z., Jenkins, J.R. and May, E. (1995) Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53, Oncogene 11, 2197–2205.

    PubMed  CAS  Google Scholar 

  • Yoshida, H., Kong, Y-Y., Yoshida, R., Elia, A.J., Haken, A., Hakem, R., Penninger, J.M. and Mak, T.W. (1998) Apaf-1 is required for mitochondrial pathways of apoptosis and brain development, Cell, 94, 739–750.

    Article  PubMed  CAS  Google Scholar 

  • Yu, B., Hailman, E. and Wright, S.D (1997) Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids, J. Clin. Invest. 99, 315–324.

    PubMed  CAS  Google Scholar 

  • Yu, Y.T. and Snyder, L. (1994) Translation elongation factor Tu cleaved by a phage-exclusion system, Proc. Natl. Acad. Sci. USA 91, 802–806.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. (1993) The C.elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme, Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M. and Kroemer, G. (1996) Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183, 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  • Zha, J., Harada, H., Yang, E., Jockei, J. and Korsmeyer, S.J. (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X, Cell 87, 619–628.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Cado, D., Chen, A., Kabra, N.H. and Winoto, A. (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mortl, Nature 392, 296–300.

    Article  PubMed  CAS  Google Scholar 

  • Zhivotosky, B., Orrenius, S., Brutugun, O.T. and Doskeland, S.O. (1998) Injected cytochrome-c induces apoptosis, Nature 391, 449–450.

    Article  Google Scholar 

  • Zou, H., Henzel, W.J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome-c-dependent activation of caspase-3, Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mckenna, S.L., Carmody, R.J., Cotter, T.G. (1999). The Regulation of Apoptosis in Animal Cells. In: Al-Rubeai, M. (eds) Cell Engineering. Cell Engineering, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-37971-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-37971-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5790-2

  • Online ISBN: 978-0-585-37971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics