Advertisement

The Regulation of Apoptosis in Animal Cells

  • S. L. Mckenna
  • R. J. Carmody
  • T. G. Cotter
Part of the Cell Engineering book series (CEEN, volume 1)

Abstract

It has now been established that physiologically controlled cell death is an integral and indispensable component of metazoan life. Normal development necessitates a measured amount of cell deletion as does homeostatic maintenance and protection of the organism from pathogens. The process whereby a cell orchestrates its own destruction is now referred to as apoptosis or programmed cell death (PCD). Apoptosis is a phrase originally employed to denote a collective set of features observed in dying cells (Kerr et al, 1972). These include cell shrinkage, chromatin condensation and membrane blebbing. These visible features reflect an orderly internal process of cellular dismantling, packaging and surface alterations which make the cell recognisable and safely digestible for neighbouring or phagocytic cells. In contrast to necrosis (or pathological cell death), where cell contents are released, apoptosis does not induce an inflammatory response and it is a relatively unobtrusive exit from life.

Keywords

Programme Cell Death Death Receptor Spinal Muscular Atrophy Survival Factor Death Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B. and Stark, G.R. (1998) The p53 network, J. Biol. Chem. 273, 1–4.PubMedCrossRefGoogle Scholar
  2. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. and Weissman, I.L. (1997) Bc1-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice, Cell 89, 1033–1041.PubMedCrossRefGoogle Scholar
  3. Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W. and Yuan, J. (1996) Human ICE/CED-3 protease nomenclature, Cell 87, 171.PubMedCrossRefGoogle Scholar
  4. Ambrosini, G., Adida, C. and Altieri, D.C. (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma, Nat.Med. 3, 917–921.PubMedCrossRefGoogle Scholar
  5. An, B. and Ping Dou, Q. (1996) Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta converting enzyme like protease, Cancer Res. 56, 438–442.PubMedGoogle Scholar
  6. Armstrong, J.F., Kaufman, M.H., Harrison, D.J. and Clark, A.R. (1995) High-frequency developmental abnormalities in p53 deficient mice, Curr. Biol. 5, 931–936.PubMedCrossRefGoogle Scholar
  7. Ashkenazi, A. and Dixit, V.M. (1998) Death receptors: signaling and modulation, Science 281, 1305–1308.PubMedCrossRefGoogle Scholar
  8. Baffy, G., Miyashita, T., Wiliamson, T.R. and Reed, J.C. (1993) Apoptosis induced by withdrawl of interleukin-3 from an IL-3 dependent hematopoetic cell line is associated with a repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production, J. Biol. Chem. 268, 6511–6519.PubMedGoogle Scholar
  9. Barde, Y.A. (1989) Trophic factors and neuronal survival, Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  10. Bergeron, L., Perez, G.I., Macdonald, G., Shi, L., Sun, Y., Jurisicova, A., Varmuza, S., Latham, K.E., Flaws, J.A., Salter, J.C.M., Hara, H., Moskowitz, M.A., Li, E., Greenberg, A., Tilly, J.L. and Yuan, J. (1998) Defects in regulation of apoptosis in caspase-2 deficient mice, Genes Dev. 12, 1304–1314.PubMedGoogle Scholar
  11. Blandino, G., Scardigli, R., Rizzo, M.G., Crescenzi, M., Soddu, S. and Sacchi, A. (1995) Wild type p53 modulates apoptosis of normal, IL-3 deprived, hematopoitic cells, Oncogene 10, 731–737.PubMedGoogle Scholar
  12. Boise, L.H., Minn, A.J., Noel, P.J., June, C.H., Accavitti, M.A., Lindsten, T. and Thompson, C.B. (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bc1-XL, Immunity 3, 87–98.PubMedCrossRefGoogle Scholar
  13. Bokoch, G.M. (1998) Caspase mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ. 5, 637–645.PubMedCrossRefGoogle Scholar
  14. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death, Cell 85, 803–815.PubMedCrossRefGoogle Scholar
  15. Boldin, M.P., Varfolomeev, E.E., Pancer, Z., Mett, I.L., Camonis, J.H. and Wallach, D. (1995) A novel protein that interacts with the death domain ofFas/APO1 contains a sequence motif related to the deathdomain, J. Biol. Chem. 270, 7795–7798.PubMedCrossRefGoogle Scholar
  16. Borner, C., Martinou, I., Mattmann, C., Irmler, M., Schaerer, E., Martinou, J.C. and Tschopp, J.J. (1994) The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis, J. Cell Biol 126, 1059–1068.PubMedCrossRefGoogle Scholar
  17. Bossy-Wetzel, E., Newmeyer, D.D. and Green, D.R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17, 37–49.PubMedCrossRefGoogle Scholar
  18. Bratton, D.L., Fadok, V.A., Richter, D.A., Kailey, J.M., Guthrie, L.A. and Henson, P.M. (1997) Appearance of phosphatidyltserine on apoptotic cells requires calcium mediated non-specific flip-flop and is enhanced by loss of the aminophspholipid translocase, J. Biol. Chem. 272, 26159–26165.PubMedCrossRefGoogle Scholar
  19. Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C, Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A., Miller, L.K. and Wong, W.W. (1995) Inhibition of ICE family proteases by baculovirus anti-apoptotic protein P35, Science 269, 1885–1888.PubMedCrossRefGoogle Scholar
  20. Caelles, C., Helmberg, A. and Karin, M. (1994) p53-dependant apoptosis in the absence of transcriptional activation of p53-target genes, Nature 370, 220–223.PubMedCrossRefGoogle Scholar
  21. Callahan, M.K., Krahling, S.A., Williamson, P. and Schengel, R.A. (1997) The role of CD14 in the recognition and phagocytosis of apoptotic thymocytes by macrophages, Mol. Cell. Biol. 8 (Suppl.), 147a.Google Scholar
  22. Carmody, R.J., Cotter, T.G. and McKenna, S.L. (1998) Programmed Cell Death (Apoptosis), In: Encyclopedia of Animal and Plant Cell Technology Ed: Miller, W.M. In press. Wiley, USA.Google Scholar
  23. Carmody, R.J., Costa-Pereira, A.P., McKenna, S.L., and Cotter, T.G. (1998) Detection of molecular events during apoptosis by flow cytometry, In: Aging: Methods and protocols, Strehler, B. (ed), In press. The Humana Press Inc., USA.Google Scholar
  24. Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J. and Rosen, A. (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269, 30757–30760.PubMedGoogle Scholar
  25. Chang, B.S., Minn, A.J., Muchmore, S.W., Fesik, S.W. and Thompson, C.B. (1997) Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2, EMBO J. 16, 968–977.PubMedCrossRefGoogle Scholar
  26. Chao, D.T. and Korsmeyer, S.J. (1998) BCL-2 family: regulators of cell death, Annu. Rev. Immunol. 16, 395–419.PubMedCrossRefGoogle Scholar
  27. Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., Yen, J.J. and Yang-Yen, H.F. (1998) mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response, Mol. Cell. Biol. 8, 4883–4898.Google Scholar
  28. Cheng, E.H.-.Y., Kirsch, D.G., Clem, R.J., Ravi, R., Kastan, M.B., Bedi, A., Ueno, K. and Hardwick, J.M. (1997) Conversion of Bcl-2 to a Bax like death effector by caspases, Science 278, 1966–1968.PubMedCrossRefGoogle Scholar
  29. Chinnaiyan, A.M., O’Rourke, K., Lane, B.R. and Dixit, V.M. (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death, Science 275, 1122–1126.PubMedCrossRefGoogle Scholar
  30. Chinnaiyan, A.M., O’Rourke, K., Yu, G.L., Lyons, R.H., Garg, M., Duan, D.R., Xing, L., Gentz, R., Ni, J. and Dixit, V.M. (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95, Science 274, 990–992.PubMedCrossRefGoogle Scholar
  31. Clem, R.J., Hardwick, J.M. and Miller, L.K. (1996) Anti-apoptotic genes of baculoviruses, Cell Death Differ. 3, 9–16.PubMedGoogle Scholar
  32. Cohen, J.J. and Duke, R.C. (1984) Glucocorticoid activation of a calcium-dependant endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132, 38–42.PubMedGoogle Scholar
  33. Cory, S., Harris, A.W. and Strasser, A. (1994) Insights from transgenic mice regarding the role of bcl-2 in normal and neoplastic lymphoid cells, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 345, 289–295.PubMedCrossRefGoogle Scholar
  34. Costa-Pereira, A.P. and Cotter, T.G. (1998) Camptothecin sensitises androgen independant prostate cancer cells to anti-Fas induced apoptosis, Br. J. Cancer In press.Google Scholar
  35. Cosulich, S. and Clark, P. (1996) Apoptosis: Does stress kill? Curr. Biol. 6, 1586–1588.PubMedCrossRefGoogle Scholar
  36. Cotter, T.G. and Martin, S.J: Techniques in apoptosis: A users guide, Portland Press, London, (1996).Google Scholar
  37. Coucouvanis, E. and Martin, G.R. (1995) Signals for death and survival: a two step mechanism for cavitation in the verterbrate embryo, Cell 83, 279–287.PubMedCrossRefGoogle Scholar
  38. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M.E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell 91, 231–241.PubMedCrossRefGoogle Scholar
  39. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. and Nunez, G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt, Science 278, 687–689.PubMedCrossRefGoogle Scholar
  40. Devitt, A., Moffatt, O.D., Raykundalia, C., Capra, J.D., Simmons, D.L. and Gregory, C.D. (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells, Nature 392, 505–509.PubMedCrossRefGoogle Scholar
  41. Downward, J. (1998) Ras signalling and apoptosis, Curr. Opin. Genet. Dev 8, 49–54.PubMedCrossRefGoogle Scholar
  42. Duan, H. and Dixit, V.M. (1997) RAIDD is a new ‘death’ adaptor molecule, Nature 385, 86–89.PubMedCrossRefGoogle Scholar
  43. Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Vandongen, I.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M. and Thomspon, C.B. (1996) A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors, EMBO J. 15, 2685–2694.PubMedGoogle Scholar
  44. Dudek, H., Robert Datta, S., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R. and Greenberg, M.E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt, Science 275, 661–664.PubMedCrossRefGoogle Scholar
  45. Duvall, E., Wyllie, A.H. and Morris, R.G. (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis), Immunology 56, 351–358.PubMedGoogle Scholar
  46. Ellis, H.M. and Horvitz, H.R. (1986) Genetic control of programmed cell death in the nematode C.elegans, Cell 44, 817–829.PubMedCrossRefGoogle Scholar
  47. Ellis, R.E., Yuan, J.Y. and Horvitz, H.R. (1991) Mechanisms and functions of cell death, Ann. Rev. Cell Biol. 7, 663–698.PubMedGoogle Scholar
  48. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated Dnase that degrades DNA during apoptosis, and its inhibitor ICAD, Nature 391, 43–50.PubMedCrossRefGoogle Scholar
  49. Enari, M., Talanian, R.V., Wong, W.W. and Nagata, S. (1996) Sequential activation of ICE-like proteases during Fas-mediated apoptosis, Nature 380, 723–726.PubMedCrossRefGoogle Scholar
  50. Erhardt, P., Tomaselli, K.J. and Cooper, G.M. (1997) Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases, J. Biol. Chem. 272, 15049–15052.PubMedCrossRefGoogle Scholar
  51. Evan, G. and Littlewood, T. (1998) A matter of life and death, Science 281, 1317–1322.PubMedCrossRefGoogle Scholar
  52. Fadok, V.A., Bratton, D.L., Frasch, S.C., Warner, M.L. and Henson, P.M. (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes, Cell Death Differ. 5, 551–562.PubMedCrossRefGoogle Scholar
  53. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148, 2207–2216.PubMedGoogle Scholar
  54. Falasca, L., Bergamini, A., Serafino, A., Balabaud, C. and Dini, L. (1996) Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes, Exp. Cell Res. 224, 152–162.PubMedCrossRefGoogle Scholar
  55. Fanidi, A., Harrington, E.A. and Evan, G.I. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes, Nature 359, 554–556.PubMedCrossRefGoogle Scholar
  56. Fernandes-Alnemri, T., Litwack, G. and Alnemri, E.S. (1994) CPP32 a novel human apoptotic protein with homology to C.elegans cell death ced-3 and mammalian interleukin-1B converting enzyme, J. Biol. Chem. 269, 30761–30764.PubMedGoogle Scholar
  57. Fesus, L., Thomazy, V. and Falus, A. (1987) Induction and activation of tissue transglutaminase during programmed cell death, FEBS Lett. 224, 104–108.PubMedCrossRefGoogle Scholar
  58. Furtwangler, J.A., Hall, S.H. and Koskinen, M.L. (1985) Sutural morphogenesis in the mouse calvaria: the role of apoptosis, Acta. Anal 124, 74–80.Google Scholar
  59. Glucksman, A. (1951) Cell deaths in normal vertebrate ontogeny, Biol. Rev. Camb. Philos. Soc. 26, 59–86.Google Scholar
  60. Goldring, M.B. and Goldring, S.R. (1991) Cytokines and cell growth control, Crit. Rev. Eukaryot. Gene. Expr. 1, 301–26.PubMedGoogle Scholar
  61. Golstein, P. (1997) Cell death: TRAIL and its receptors, Curr. Biol. 7, R750–R753.PubMedCrossRefGoogle Scholar
  62. Goltsev, Y.V., Kovalenko, A.V., Arnold, E., Varfolomeev, E.E., Brodianskii, V.M. and Wallach, D. (1997) CASH, a novel caspase homologue with death effector domains, J. Biol. Chem. 272, 19641–19644.PubMedCrossRefGoogle Scholar
  63. Gouin, A., Camu, W., Bloch-Gallego, E., Mettling, C. and Henderson, C.E. (1993) Growth and survival factors of spinal motorneurones, C. R. Seances. Soc. Biol. Fil. 187, 47–61.PubMedGoogle Scholar
  64. Granville, D.J., Carthy, C.M., Yang, D., Hunt, D.W.C. and McManus (1998) Interaction of viral proteins with host cell death machinery, Cell Death Differ. 5, 653–659.PubMedCrossRefGoogle Scholar
  65. Green, D.R. and Reed, J.C. (1998) Mitochondria and Apoptosis, Science, 281, 1309–1312.PubMedCrossRefGoogle Scholar
  66. Greenberg, J.T. (1996) Programmed cell death: A way of life for plants, Proc. Natl. Acad. Sci. USA 93, 12094–12097.PubMedCrossRefGoogle Scholar
  67. Gruss, H.J. and Dower, S.K. (1995) Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas, Blood. 85, 3378–3404.PubMedGoogle Scholar
  68. Hacker G and Vaux DL. (1995) A sticky buisness, Curr. Biol. 5, 622–624.PubMedCrossRefGoogle Scholar
  69. Hacker, G. and Vaux, D.L. (1994) Viral, worm and radical implications for apoptosis, Trends Biochem. Sci. 19, 99–100.CrossRefGoogle Scholar
  70. Hahne, M., Rimoldi, D., Schroter, M., Romero, P., Schreier, M., French, L.E., Schneider, P., Bornand, T., Fontana, A., Lienard, D., Cerottini, J. and Tschopp, J. (1996) Melanoma cell expression of Fas(Apo-l/CD95) ligand: implications for tumor immune escape, Science 274, 1363–1366.PubMedCrossRefGoogle Scholar
  71. Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S.A., Lowe, S.W., Penninger, J.M. and Mak, T.W. (1998) Differential requirement for Caspase 9 in apoptotic pathways in vivo, Cell 94, 339–352.PubMedCrossRefGoogle Scholar
  72. Haldar, S., Basu, A. and Croce, C.M. (1998) Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells, Cancer Res. 58, 1609–1615.PubMedGoogle Scholar
  73. Hara, H., Friedlander, R.M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z., Shimizu-Sasamata, M., Yuan, J. and Moskowitz, M.A. (1997) Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage, Proc. Natl. Acad. Sci. USA 94, 2007–2012.PubMedCrossRefGoogle Scholar
  74. Harrington, E.A., Bennett, M.R., Fanidi, A. and Evan, G.I. (1994) c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines, EMBO J. 13, 3286–3295.PubMedGoogle Scholar
  75. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. and Oren, M. (1995) Induction of apoptosis in HeLa cells by transactivation deficient p53, Genes Dev. 9, 2170–2183.PubMedCrossRefGoogle Scholar
  76. Hengartner, M.O. and Horvitz, H.R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1-2, Cell 76, 665–676.PubMedCrossRefGoogle Scholar
  77. Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75, 241–251.PubMedCrossRefGoogle Scholar
  78. Hsu, H., Shu, H.B., Pan, M.G. and Goeddel, D.V. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell 84, 299–308.PubMedCrossRefGoogle Scholar
  79. Hsu, H., Xiong, J. and Goeddel, D.V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell 81, 495–504.PubMedCrossRefGoogle Scholar
  80. Hu, S., Vincenz, C., Ni, J., Gentz, R. and Dixit, V.M. (1997) I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis, J. Biol. Chem. 272, 17255–17257.PubMedCrossRefGoogle Scholar
  81. Hu, Y., Benedict, M.A., Wu, D., Inohara, N. and Nunez, G. (1998) Bc1-XL interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation, Proc. Natl. Acad. Sci USA. 95, 4386–4391.PubMedCrossRefGoogle Scholar
  82. Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain, Nature 384, 638–641.PubMedCrossRefGoogle Scholar
  83. Hughes, R.A., Sendtner, M. and Thoenen, H. (1993) Members of several gene families influence survival of rat motoneurones in vitro and in vivo, J. Neurosci.Res. 15, 663–671.CrossRefGoogle Scholar
  84. Hughes, F.M. and Cidlowski, J.A. (1994) Apoptotic DNA degradation: evidence for novel enzymes, Cell Death Differ. 1, 11–17.PubMedGoogle Scholar
  85. Humke, E.W., Ni, J. and Dixit, V.M. (1998) ERICE, a novel FLICE-activatable caspase, J. Biol. Chem. 273, 15702–15707.PubMedCrossRefGoogle Scholar
  86. Ichas, F. and Mazat, J.P. (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state, Biochim. Biophys. Acta. 1366, 33–50.PubMedCrossRefGoogle Scholar
  87. Inohara, N., Ding, L., Chen, S. and Nunez, G. (1997) harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L), EMBO J. 16, 1686–1694.PubMedCrossRefGoogle Scholar
  88. Inohara, N., Ekhterae, D., Garcia, I., Carrio, R., Merino, J., Merry, A., Chen, S., Nunez, G. (1998) Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 andBcl-XL, J. Biol. Chem. 273, 8705–8710.PubMedCrossRefGoogle Scholar
  89. Ito, T., Deng, X., Carr B. and May, W.S. (1997) Bcl-2 phosphorylation required for anti-apoptosis function, J. Biol. Chem. 272, 11671–11673.PubMedCrossRefGoogle Scholar
  90. Jacobson, M.D., Weil, M. and Raff, M.C. (1997) Programmed cell death in animal development, Cell 88, 347–354.PubMedCrossRefGoogle Scholar
  91. Jurgensmeier, J.M., Xie, Z., Deveraux, Q,., Ellerby, L., Bredesen, D. and Reed, J.C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. USA. 95, 4997–5002.PubMedCrossRefGoogle Scholar
  92. Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J. and Evan, G. (1997) Suppression of c-Myc induced apoptosis by Ras signalling through PI(3)K and PKB, Nature 385, 544–548.PubMedCrossRefGoogle Scholar
  93. Kelekar, A. and Thompson, C.B. (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis, Trends Cell Biol. 8, 324–330.PubMedCrossRefGoogle Scholar
  94. Kelekar, A., Chang, B.S., Harlan, J.E., Fesik, S.W. and Thompson, C.B. (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL, Mol. Cell. Biol. 17, 7040–7046.PubMedGoogle Scholar
  95. Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N. and Hay, N. (1997) The PI3-kinase / Akt signaling pathway delivers an anti-apoptotic signal, Genes Dev. 11, 701–713.PubMedCrossRefGoogle Scholar
  96. Kerr, J.F.R., Searle, J., Harmon, B.V. and Bishop, C.J. (1987) Apoptosis. In: Perspectives on mammalian cell death (ed. C.S. Potten), pp 93–119 Oxford University Press, Oxford, New York, Tokyo.Google Scholar
  97. Kerr, J.F.R., Wyllie, A.H. and Currie, A.H. (1972) Apoptosis, a basic biological phenomenon with wider implications in tissue kinetics, Br. J. Cancer 26, 239–245.PubMedGoogle Scholar
  98. Kharbanda, S., Pandey, P., Ren, R., Mayer, B., Zon, L. and Kufe, D. (1995a) c-Abl activation regulates induction of the SEKl/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine, J. Biol. Chem. 270, 30278–30281.PubMedCrossRefGoogle Scholar
  99. Kharbanda, S., Ren, R., Pandey, P., Shafman, T.D., Feller, S.M., Weichselbaum, R.R. and Kufe, D.W. (1995b) Activation of the c-Abl tryosine kinase in the stress response to DNA damaging agents, Nature 376, 785–788.PubMedCrossRefGoogle Scholar
  100. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. and Downward, J. (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway, EMBO J. 16, 2783–2793.PubMedCrossRefGoogle Scholar
  101. Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S. and Miyajima, A. (1997) Raf/MAPK and rapamycin sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3 dependent hematopoietic cells, Oncogene 15, 619–627.PubMedCrossRefGoogle Scholar
  102. Kinoshita, T., Yokota, T., Arai, K. and Miyajima, A. (1995) Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors, EMBO J. 14, 266–275.PubMedGoogle Scholar
  103. Kluck, R.M., Bossy-Wetzel, E., Green. D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science, 275, 1132–1136.PubMedCrossRefGoogle Scholar
  104. Koliatsos, V.E., Cayouette, M.H., Berkemeier, L.R., Clatterbuck, R.E., Price, D.L. and Rosenthal, A. (1994) Neurotrophin4/5 is a trophic factor for mammalian facial motor neurons, Proc. Natl. Acad. Sci. USA 91, 3304–3308.PubMedCrossRefGoogle Scholar
  105. Koseki, T., Inohara, N., Chen, S. and Nunez, G. (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases, Proc. Natl Acad. Sci. USA 95, 5156–60.PubMedCrossRefGoogle Scholar
  106. Koury, M.J. and Bondurant, M.C. (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science 248, 378–381.PubMedCrossRefGoogle Scholar
  107. Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P. and Craig, R.W. (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2, Proc. Natl. Acad. Sci. USA. 90, 3516–3520.PubMedCrossRefGoogle Scholar
  108. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis, Annu. Rev. Physiol. 60, 619–642.PubMedCrossRefGoogle Scholar
  109. Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y.o.n.g., Taya, C., Karasuyama, H., Su, M.S.-.S., Rakic, P. and Flavell, R.A. (1998) Reduced apoptosis and cytochrome c mediated caspase activation in mice lacking caspase 9, Cell 94, 325–337.PubMedCrossRefGoogle Scholar
  110. Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S. and Flavell, R.A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme, Science 267, 2000–2003.PubMedCrossRefGoogle Scholar
  111. Kuida, K., Zheng, T.S., Na, S., Kuan, C.-.Y., Yang, D., Karasuyama, H., Rakic, P. and Flavell, R.A. (1996) Decreased apoptosis in the brain and lethality in CPP32-deficient mice, Nature 384, 368–372.PubMedCrossRefGoogle Scholar
  112. Kulik, G., Klippel, A. and Weber, M.J. (1997) Antiapoptotic signalling by the insulin like growth factor I receptor, phosphatidylinositol 3-kinase and Akt, Mol Cell Biol 17, 1595–1606.PubMedGoogle Scholar
  113. Kunstle, G., Leist, M., Uhlig, S., Revesz, L., Feifel, R., MacKenzie, A. and Wendel, A. (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF alpha, Immunol. Lett. 55, 5–10.PubMedCrossRefGoogle Scholar
  114. Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R.L. and Distelhorst, C.W. (1994) Evidence that bcl-2 represses apoptosis by regulating endoplasmic recticulum associated calcium fluxes, Proc. Natl. Acad. Sci.USA. 91, 6569–6573.PubMedCrossRefGoogle Scholar
  115. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. and Earnshaw, W.C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371, 346–347.PubMedCrossRefGoogle Scholar
  116. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S. and Nicotera, P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis, J. Exp. Med. 185, 1481–1486.PubMedCrossRefGoogle Scholar
  117. Lewin, G.R. (1996) Neurotrophins and the specification of neuronal phenotype, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 405–411.CrossRefGoogle Scholar
  118. Lewinson, D. and Silbermann, M. (1992) Chondroclasts and endothelial cells collaborate in the process of cartilage resorption, Anat. Rec. 233, 504–514.PubMedCrossRefGoogle Scholar
  119. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfield, J. and etal (1995) Mice deficient in IL-1B converting enzyme are defective in production of mature IL-1B and resistant to endotoxic shock, Cell 80, 401–411.PubMedCrossRefGoogle Scholar
  120. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade, Cell 91, 479–489.PubMedCrossRefGoogle Scholar
  121. Lin, E.Y., Orlofsky, A., Berger, M.S. and Prystowsky, M.B. (1993) Characterization of Al, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2, J. Immunol. 151, 1979–1988.PubMedGoogle Scholar
  122. Lin, Y. and Benchimol, S. (1995) Cytokines inhibit p53-mediated apoptosis but not p53-mediated Gl arrest, Mol. Cell. Biol. 15, 6045–6054.PubMedGoogle Scholar
  123. Lindsay, R.M. (1996) Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 365–373.CrossRefGoogle Scholar
  124. Ling, Y.H., Tornos, C. and Perez-Soler, R. (1998) Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis, J. Biol, Chem. 273, 18984–18991.CrossRefGoogle Scholar
  125. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Chertonhorvat, G., Farahani, R., Mclean, M., Ikeda, J.E., Mackenzie, A. and Korneluk, R.G. (1996) Supression of apoptosis in mammalian cells by NAIP and a related family of IAP genes, Nature 379, 349–353.PubMedCrossRefGoogle Scholar
  126. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. and Efstratiadis, A. (1993) Mice carrying null mutations of the genes encoding insulin like growth factor I (IGF-I) and type I IGF receptor (IGF-IR), Cell 75, 59–72.PubMedGoogle Scholar
  127. Lotem, J. and Sachs, L. (1995) A mutant p53 antagonizes the deregulated c-myc- mediated enhancement of apoptosis and decrease in leukemogenicity, Proc. Natl Acad. Sci. USA 92, 9672–9676.PubMedCrossRefGoogle Scholar
  128. Lowery, P.A. (1995) Hematopoietic stem cell cytokine response, J. Cell Biochem. 58, 410–415.CrossRefGoogle Scholar
  129. Luciani, M.F. and Chimini, G. (1996) The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death, EMBO J. 15, 226–235.PubMedGoogle Scholar
  130. Mancini, M., Anderson, B.O., Caldwell, E., Sedghinasab, M., Paty, P.B. and Hockenbery, D.M. (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line, J. Cell Biol. 138, 449–469.PubMedCrossRefGoogle Scholar
  131. Mancini, M., Nicholson, D.W., Roy, S., Thornberry, N.A., Peterson, E.P., Casciola-Rosen, L.A. and Rosen, A. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling, J. Cell Biol. 140, 1485–1495.PubMedCrossRefGoogle Scholar
  132. Mandrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C. and et al (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress activated protein kinase in the presence of the constitutively active GTP binding protein Racl, J. Biol. Chem. 272, 25238–25242.CrossRefGoogle Scholar
  133. Maraskovsky, E., O’Reilly, L.A., Teepe, M., Corcoran, L.M., Peschon, J.J. and Strasser, A. (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/-mice, Cell 89, 1011–1019.PubMedCrossRefGoogle Scholar
  134. Mariani, S.M., Matiba, B., Armandola, E.A. and Krammer, P.H. (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells, J. Cell Biol. 137, 221–229.PubMedCrossRefGoogle Scholar
  135. Marsters, S.A., Sheridan, J.P., Pitti, R.M., Brush, J., Goddard, A. and Ashkenazi, A. (1998) Identification of a ligand for the death-domain-containing receptor Apo3, Curr. Biol. 8, 525–528.PubMedCrossRefGoogle Scholar
  136. Marsters, S.A., Sheridan, J.P., Pitti, R.M., Huang, A., Skubatch, M., Baldwin, D., Yuan, J., Gurney, A., Goddard, A.D., Godowski, P. and Ashkenazi, A. (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain, Curr. Biol. 7, 1003–1006.PubMedCrossRefGoogle Scholar
  137. Martin, S.J., Reutelingsperger, C.P.M., McGahon, A.J., Radar, J.A., van Schie, R.C., LaFace, D.M. and Green D.R. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl, J. Exp. Med. 182, 1545–1556.PubMedCrossRefGoogle Scholar
  138. Mathias, S., Dressier, K.A. and Kolesnick, R.N. (1991) Characterization of a ceramide activated protein kinase: stimulation by tumor necrosis factor alpha, Proc. Natl. Acad. Sci. USA 88, 10009–10013.PubMedCrossRefGoogle Scholar
  139. Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.C. and Arkinstall, S. (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl, J. Biol. Chem. 272, 25238–25242.PubMedCrossRefGoogle Scholar
  140. McCarthy, J.V. and Cotter, T.G. (1997) Cell shrinkage: a role for potassium and sodium ion flux, Cell. Death. Differ. 4, 756–770.PubMedCrossRefGoogle Scholar
  141. McKenna, S.L. and Cotter, T.G. (1997) Functional aspects of apoptosis in haematopoiesis and consequences of failure, Adv. Cancer Res. 71, 121–164.PubMedGoogle Scholar
  142. Minn, A.J., Velez, P., Schendel, S.L., Liang, H., Muchmore, S.W., Fesik, S.W., Fill, M. and Thompson, C.B. (1997) Bcl-XL forms an ion channel in sythetic lipid membranes, Nature, 385, 353–357.PubMedCrossRefGoogle Scholar
  143. Minshall, C, Arkins, S., Freund, G.G. and Kelley, K.W. (1996) Requirement for phosphatidylinositol 3 kinase to protect hemopoietic progenitors against apoptosis depends upon the extracellular survival factor, J. Immunol. 156, 939–947.PubMedGoogle Scholar
  144. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta converting enzyme, a mammalian homologue of the C. elegans cell death gene ced-3, Cell 75, 653–660.PubMedCrossRefGoogle Scholar
  145. Miyashita, T. and Reed, J.C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell 80, 293–299.PubMedCrossRefGoogle Scholar
  146. Miyashita, T., Harigai, M., Hanada, M. and Reed, J.C. (1994) Identification of a p53-dependant negative response element in the bcl-2 gene, Cancer Res. 54, 3131–3135.PubMedGoogle Scholar
  147. Mongkolsapaya, J., Cowper, A.E., Xu, X.N., Morris, G., McMichael, A.J., Bell, J.I. and Screaton, G.R. (1998) Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL, J. Immunol. 160, 3–6.PubMedGoogle Scholar
  148. Morgan, S.E. and Kastan, M.B. (1997) p53 and ATM: Cell cycle, cell death, and cancer, Adv. Cancer Res. 71, 1–25.PubMedGoogle Scholar
  149. Morris, R.G., Duvall, E., Hargreaves, A.D. and Wyllie, A.H. (1984) Hoermoneinduced cell death. 2. Surface changes in thymocytes undergoing apoptosis, Am. J. Pathol. 115, 426–436.PubMedGoogle Scholar
  150. Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S-C, and Fesik, S.W. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature 381, 335–341.PubMedCrossRefGoogle Scholar
  151. Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S. and Dixit V.M. (1998) An induced proximity model for caspase-8 activation, J. Biol. Chem. 273, 2926–2930.PubMedCrossRefGoogle Scholar
  152. Nagata, S. (1997) Apoptosis by death factor, Cell 88, 3553–65.CrossRefGoogle Scholar
  153. Nicholson, D.W. and Thornberry, N.A. (1997) Caspases: killer proteases, Trends Biochem. Sci. 22, 299–306.PubMedCrossRefGoogle Scholar
  154. O’Connor, L., Strasser, A., O’Reilly, L.A., Hausmann, G., Adams, J.M., Cory, S. and Huang, D.C. (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis, EMBO J. 17, 384–395.PubMedCrossRefGoogle Scholar
  155. O’Connor, R. (1998) Survival factors and apoptosis, Adv.Biochem.Eng.Biotech. 62, 137–166.Google Scholar
  156. Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R. and Sikorska, M.(1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50kb fragments prior to or in the absence of internucleosomal fragmentation, EMBO J. 12, 3670–3684.Google Scholar
  157. Ockel, M., von-Schack, D., Schropel, A., Dechant, G., Lewin, G.R. and Barde, Y.A. (1996) Roles of neurotrophin-3 during early development of the peripheral nervous system, Phiolos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 383–387.CrossRefGoogle Scholar
  158. Oltvai, Z.N. and Korsmeyer, S.J. (1994) Checkpoints of dueling dimers foil death wishes, Cell 79, 189–192.PubMedCrossRefGoogle Scholar
  159. Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell 74, 609–619.PubMedCrossRefGoogle Scholar
  160. Oppenheim, R.W. (1991) Cell death during development of the nervous system, Annu. Rev. Neurosci. 14, 453–501.PubMedCrossRefGoogle Scholar
  161. Orth, K., O’Rourke, K., Salvesen, G.S. and Dixit, V.M. (1996) Molecular ordering of mammalian CED-3/ICE-like proteases, J. Biol. Chem. 271, 20977–20980.PubMedCrossRefGoogle Scholar
  162. Owen-Schaub, L.B., Zhang, W., Cusack, J.C., Angelo, L.S., Santee, S.M., Fujiwara, T., Roth, J.A., Deisseroth, A.B., Zhang, W.-.W., Kruzel, E. and etal (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression, Mol Cell Biol 15, 3032–3040.PubMedGoogle Scholar
  163. Pan, G., Ni, J., Yu, G., Wei, Y.F. and Dixit, V.M. (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling, FEBS Lett. 424, 41–45.PubMedCrossRefGoogle Scholar
  164. Pan, G., O’Rourke, K. and Dixit, V.M. (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex, J. Biol. Chem. 273, 5841–5845.PubMedCrossRefGoogle Scholar
  165. Pan, G., O’Rourke, K., Chinnaiyan, A.M., Gentz, R., Ebner. R., Ni, J. and Dixit, V.M. (1997) The receptor for the cytotoxic ligand TRAIL, Science 276, 111–113.PubMedCrossRefGoogle Scholar
  166. Penfold, P.L. and Provis, J.M. (1986) Cell death in the development of the human retina: phagocytosis of pyknotic and apoptotic bodies by retinal cells, Graefes. Arch. Clin. Exp. Ophthalmol. 224, 549–553.PubMedCrossRefGoogle Scholar
  167. Porter, A.G., Ng, P. and Janicke, R.U. (1997) Death substrates come alive, BioEssays 19, 501–507.PubMedCrossRefGoogle Scholar
  168. Raff, M.C. (1992) Social controls on cell survival and cell death, Nature 356, 397–400.PubMedCrossRefGoogle Scholar
  169. Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S. and White, E. (1992) The adenovirus El A proteins induce apoptosis which is inhibited by the E1B 19-kDa and Bcl-2 proteins, Proc. Natl. Acad. Sci. USA 89, 7742–7746.PubMedCrossRefGoogle Scholar
  170. Reed, J.C. (1997) Double identity for proteins of the bcl-2 family, Nature, 387, 773–776.PubMedCrossRefGoogle Scholar
  171. Reichel, M.B., Ali, R.R., D’Esposito, F., Clark, A.R., Luthert, P.J., Battacharya, S.S. and Hunt, D.M. (1998) High frequency of persistant hyperplastic primary vitreous and cataracts in p53 deficient mice, Cell Death Differ. 5, 156–162.PubMedCrossRefGoogle Scholar
  172. Rodriguez-Tarduchy-G, Collins-MK, Garcia-I and Lopez-Rivas, A. (1992) Insulin like growth factor-I inhibits apoptosis in IL-3 dependent hemopoietic cells, J. Immunol. 149, 535–540.PubMedGoogle Scholar
  173. Rosse, T., Olivier, R., Monney, l., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c, Nature 391, 496–499.PubMedCrossRefGoogle Scholar
  174. Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. and Goeddel, D.V. (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins, Cell 83, 1243–1252.PubMedCrossRefGoogle Scholar
  175. Rotonda, J., Nicholson, D.W., Fazil, K.M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E.P., Rasper, D.M., Ruel, R., Vaillancourt, J.P., Thornberry, N.A. and Becker JW (1996) The three dimensional structure of apopain/CPP32, a key mediator of apoptosis, Nat. Struct. Biol. 3, 619–625.PubMedCrossRefGoogle Scholar
  176. Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, A., Tamai, K., Guan, X., Ioannou, P., Crawford, T.O., de Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G. and MacKenzie, A. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell 80, 167–178.PubMedCrossRefGoogle Scholar
  177. Ruoslahti, E. and Reed, J.C. (1994) Anchorage dependance, Integrins, and apoptosis, Cell 77, 477–478.PubMedCrossRefGoogle Scholar
  178. Ryan, J.J., Prochownik, E., Gottlieb, C.A., Apel, I.J., Merino, R., Nunez, G. and Clarke, M.F. (1994) c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle, Proc. Natl. Acad. Sci. USA. 91, 5878–5882.PubMedCrossRefGoogle Scholar
  179. Ryeom, S.W., Sparrow, J.R. and Silverstein, R.L.(1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium, J. Cell. Sci. 109, 387–395.PubMedGoogle Scholar
  180. Sabbatini, P., Lin, J., Levine, A.J. and White, E. (1995) Essential role for p53-mediated treanscription in El A-induced apoptosis, Genes Dev. 9, 2184–2192.PubMedCrossRefGoogle Scholar
  181. Sah, V.P., Attardi, L.D., Mulligan, G.J., Williams, B.O., Bronson, R.T. and Jacks, T. (1995) A subset of p53-deficient embryos exhibit exencephaly, Nature Genet. 10, 175–180.PubMedCrossRefGoogle Scholar
  182. Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature 391, 96–99.PubMedCrossRefGoogle Scholar
  183. Savill, J., Dransfield, I., Hogg, N. and Haslett, C. (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature 343, 170–173.PubMedCrossRefGoogle Scholar
  184. Savill, J., Hogg, N., Ren, Y. and Haslett, C. (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, J. Clin. Invest. 90, 1513–1522.PubMedCrossRefGoogle Scholar
  185. Schendel, S.L., Xie, Z., Montai, M.O., Matsuyama, S., Montai, M., Reed, J.C. (1997) Channel formation by antiapoptotic protein Bcl-2, Proc. Natl Acad. Sci. USA. 94, 5113–5118.PubMedCrossRefGoogle Scholar
  186. Sell, C., Baserga, R. and Rubin, R. (1995) Insulin like growth factor I (IGF-1) and the IGF-I receptor prevent etoposide induced apoptosis, Cancer Res. 55, 303–306.PubMedGoogle Scholar
  187. Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., Goddard, A.D., Godowski, P. and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors, Science 277, 818–821.PubMedCrossRefGoogle Scholar
  188. Smithgall, T.E. (1998) Signal transduction pathways regulating hematopoietic differentiation, Pharmacological Reviews 50, 1–19.PubMedGoogle Scholar
  189. Song, Q., Kees-Miller, S.P., Kumar, S., Zhang, N., Chan, D.W., Smith, G.C.M., Jackson, S.P., Alnemri, E.S., Litwack, G., Khanna, K.K. and Lavin, M.F. (1996) DNA dependent protein kinase catalytic subunit: a target for an ICE like protease in apoptosis, EMBO J. 15, 3238–3246.PubMedGoogle Scholar
  190. Srinivasula, S.M., Ahmad, M., Ottilie, S., Bullrich, F., Banks, S., Wang, Y., Fernandes-Alnemri, T., Croce, C.M., Litwack, G., Tomaselli, K.J., Armstrong, R.C. and Alnemri, E.S. (1997) FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFRl-induced apoptosis, J. Biol Chem. 272, 18542–18545.PubMedCrossRefGoogle Scholar
  191. Sun, X.J., Wang, L.M., Zhang, Y., Yenush, L., Myers, M.J. J.r., Glasheen, E., Lane, W.S., Pierce, J.H. and White, M.F. (1995) Role of IRS-2 in insulin and cytokine signalling, Nature 377, 173–177.PubMedCrossRefGoogle Scholar
  192. Susin, S.A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.G., Geley, S., Fassy, F., Reed, J.C. and Kroemer, G. (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186, 25–37.PubMedCrossRefGoogle Scholar
  193. Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M. and Kroemer, G. (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 184, 1331–1341.PubMedCrossRefGoogle Scholar
  194. Tartaglia, L.A. and Goeddel, D.V. (1992) Two TNF receptors, Immunol. Today 13, 151–153.PubMedCrossRefGoogle Scholar
  195. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J.L., Schroter, M., Scaffidi, C., Krammer, P.H., Peter, M.E. and Tschopp, J. (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature 386, 517–521.PubMedCrossRefGoogle Scholar
  196. Thornberry, N.A. and Lazebnik, Y. (1998) Caspases: Enemies within, Science 281, 1312–1316.PubMedCrossRefGoogle Scholar
  197. Ting, A.T., Pimentel-Muinos, F.X. and Seed, B. (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis, EMBO J. 15, 6189–6196.PubMedGoogle Scholar
  198. Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L. and Vaux, D.L. (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor associated factors, Proc. Natl. Acad. Sci. USA 93, 4974–4978.PubMedCrossRefGoogle Scholar
  199. Van de Craen, M., Van Loo, G., Pype, S., Van Criekinge, W., Van den brande, I., Molemans, F., Fiers, W., Declercq, W. and Vandenabeele, P. (1998) Identification of a new caspase homologue: caspase 14, Cell Death Differ. 5, 838–846.PubMedCrossRefGoogle Scholar
  200. Vander Heiden, M.G, Chandel, N.S., Williamson, E.K., Schumacker, P.T. and Thompson, C.B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria, Cell 91, 627–637.CrossRefGoogle Scholar
  201. Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S. and al, e.t. (1996) Requirement for ceramide initiated SAPK/JNK signalling in stress induced apoptosis, Nature 380, 75–79.PubMedCrossRefGoogle Scholar
  202. Verhoven, B., Schengel, R.A. and Williamson, P. (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes, J. Exp. Med. 182, 1597–1601.PubMedCrossRefGoogle Scholar
  203. Walczak, H., Degli-Esposti, M.A., Johnson, R.S., Smolak, P.J., Waugh, J.Y., Boiani, N., Timour, M.S., Gerhart, M.J., Schooley, K.A., Smith, C.A., Goodwin, R.G. and Rauch, C.T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL, EMBO J. 16, 5386–5397.PubMedCrossRefGoogle Scholar
  204. Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammil, L.D. and et al (1994) Crystal structure of the cysteine protease interleukin-1B converting enzyme: a (p20/pl0)2 homodimer, Cell 78, 343–352.PubMedCrossRefGoogle Scholar
  205. Walker, P.R., Pandey, S. and Sikorska, M. (1995) Degradation of chromatin in apoptotic cells, Cell Death. Differ. 2, 97–104.PubMedGoogle Scholar
  206. Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L. and Korsmeyer, S.J. (1996) BID: a novel BH3 domain-only death agonist, Genes Dev. 10, 2859–2869.PubMedCrossRefGoogle Scholar
  207. Wang, S., Miura, M., Jung, Y.-.k., Zhu, H., Li, E. and Yuan, J. (1998) Murine Caspase-11, an ICE-interacting protease is essential for the activation of ICE, Cell 92, 501–509.PubMedCrossRefGoogle Scholar
  208. Wen, L.-.P., Madani, K., Martin, G.A. and Rosen, G.D. (1998) Proteolytic cleavage of Ras GTPase activating protein during apoptosis, Cell Death Differ. 5, 729–734.PubMedCrossRefGoogle Scholar
  209. Widmann, C., Gibson, S. and Johnson, G.L. (1998) Caspase dependant cleavage of signaling proteins during apoptosis, J. Biol. Chem. 273, 7141–7147.PubMedCrossRefGoogle Scholar
  210. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity 3, 673–682.PubMedCrossRefGoogle Scholar
  211. Wilson, K.P., Black, A.F., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A. and Livingston, D.L. (1994) Structure and mechanism of interleukin-lB converting enzyme, Nature 370, 270–275.PubMedCrossRefGoogle Scholar
  212. Woo, M., Hakem, R., Soengas, M.S., Duncan, G.S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S.A., Senaldi, G., Howard, T., Lowe, S.W. and Mak, T.W. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes, Genes Dev. 12, 806–819.PubMedGoogle Scholar
  213. Wu, Y.C. and Horvitz, H.R. (1998a) The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters, Cell 93, 951–960.PubMedCrossRefGoogle Scholar
  214. Wu, Y.C. and Horvitz, H.R. (1998b) C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180, Nature 392, 501–504.PubMedCrossRefGoogle Scholar
  215. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science 270, 1326–1331.PubMedCrossRefGoogle Scholar
  216. Xue, D. and Horvitz, H.R. (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein, Nature 377, 248–251.PubMedCrossRefGoogle Scholar
  217. Yang, X., Khosravi-Far, R., Chang, H.Y. and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis, Cell 89, 1067–1076.PubMedCrossRefGoogle Scholar
  218. Yeh, W.C., Pompa, J.L., McCurrach, M.E., Shu, H.B., Elia, A.J.,, Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W.S., Lowe, S.W., Goeddel, D.V. and Mak, T.W.(1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis, Science 279, 1954–1958.PubMedCrossRefGoogle Scholar
  219. Yonish-Rouach, E., Deguin, V., Zaitchouk, T., Breugnot, C., Mishal, Z., Jenkins, J.R. and May, E. (1995) Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53, Oncogene 11, 2197–2205.PubMedGoogle Scholar
  220. Yoshida, H., Kong, Y-Y., Yoshida, R., Elia, A.J., Haken, A., Hakem, R., Penninger, J.M. and Mak, T.W. (1998) Apaf-1 is required for mitochondrial pathways of apoptosis and brain development, Cell, 94, 739–750.PubMedCrossRefGoogle Scholar
  221. Yu, B., Hailman, E. and Wright, S.D (1997) Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids, J. Clin. Invest. 99, 315–324.PubMedGoogle Scholar
  222. Yu, Y.T. and Snyder, L. (1994) Translation elongation factor Tu cleaved by a phage-exclusion system, Proc. Natl. Acad. Sci. USA 91, 802–806.PubMedCrossRefGoogle Scholar
  223. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. (1993) The C.elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme, Cell 75, 641–652.PubMedCrossRefGoogle Scholar
  224. Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M. and Kroemer, G. (1996) Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183, 1533–1544.PubMedCrossRefGoogle Scholar
  225. Zha, J., Harada, H., Yang, E., Jockei, J. and Korsmeyer, S.J. (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X, Cell 87, 619–628.PubMedCrossRefGoogle Scholar
  226. Zhang, J., Cado, D., Chen, A., Kabra, N.H. and Winoto, A. (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mortl, Nature 392, 296–300.PubMedCrossRefGoogle Scholar
  227. Zhivotosky, B., Orrenius, S., Brutugun, O.T. and Doskeland, S.O. (1998) Injected cytochrome-c induces apoptosis, Nature 391, 449–450.CrossRefGoogle Scholar
  228. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome-c-dependent activation of caspase-3, Cell 90, 405–413.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S. L. Mckenna
    • 1
  • R. J. Carmody
    • 1
  • T. G. Cotter
    • 1
  1. 1.Tumour Biology Laboratory, Department of BiochemistryUniversity College CorkCorkRepublic of Ireland

Personalised recommendations