Modulation of Gene Expression by Ribozymes

  • Mara Szyrach
  • Olaf Heidenreich
Part of the Cell Engineering book series (CEEN, volume 1)


A reliable and specific modulation of gene expression in a cell would greatly facilitate the study of unknown gene functions, to combat pathogenic gene products or to control processes in biotechnology. One exciting option to achieve this goal is the application of antisense molecules such as antisense RNAs, antisense oligonucleotides or catalytic RNAs named ribozymes. All of these molecules bind to their target RNAs via complementary sequences, thereby forming base-paired duplices. Thus, in theory they permit a sequence-specific inhibition of gene expression. It is therefore not surprising that antisense approaches are increasingly used to understand the function of a given gene product, or to interfere with virus replication or cancerogenesis. Significant progress has been made in the design of antisense molecules, their delivery to cells, and in the understanding of their mode of action. However, compared to in vitro conditions, inside the cell the situation is much more complicated because of additional factors such as RNA-binding proteins and several intracellular compartments. Thus, in spite of the apparent simplicity of antisense approaches, many problems such as intracellular stability of the antisense molecule, target site selection, or colocalization of antisense molecule and target RNA remain to be solved. This review will address several of these problems and will discuss possible solutions. Due to space limitations, it is restricted to aspect of ribozyme applications.


Long Terminal Repeat Antisense Transcript Cationic Lipid Association Rate Hammerhead Ribozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altaian, S. (1990) Enzymatic cleavage of RNA by RNA. Angew. Chem. Int. Ed. Engl. 29, 749–758.CrossRefGoogle Scholar
  2. Aurup, H., Tuschl, T., Benseier, F., Ludwig, J. and Eckstein, F. (1994) Oligonucleotide duplexes containing 2′-amino-2′-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res. 22, 20–24.PubMedCrossRefGoogle Scholar
  3. Aurup, H., Williams, D.M. and Eckstein, F. (1992) 2′-Fluoro-and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31, 9636–9641.PubMedCrossRefGoogle Scholar
  4. Bassi, G.S., Møllegard, N.-E., Murchie, A.I.H., von Kitzing, E. and Lilley, D.M.J. (1995) Ionic interactions and the global conformations of the hammerhead ribozyme. Nature Struct. Biol. 2, 45–55.PubMedCrossRefGoogle Scholar
  5. Bauer, G., Valdez, P., Kearns, K., Banner, I., Wen, S.F., Zaia, J.A. and Kohn, D.B. (1997) Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood 89, 2259–2267.PubMedGoogle Scholar
  6. Beck, J. and Nassal, M. (1995) Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in intact cells. Nucleic Acids Res. 23, 4954–4962.PubMedCrossRefGoogle Scholar
  7. Beigelman, L., McSwiggen, J.A., Draper, K.G., Gonzalez, C., Jensen, K., Karpeisky, A.M., Modak, A.S., Matulic-Adamic, J., DiRenzo, A.B., Haeberli, P., Sweedler, D., Tracz, D., Grimm, S., Wincott, F.E., Thackray, V.G. and Usman, N. (1995) Chemical modification of hammerhead ribozymes. J. Biol. Chem. 270, 25702–25708.PubMedCrossRefGoogle Scholar
  8. Bertrand, E., Castanotto, D., Zhou, C., Carbonnelle, C., Lee, N.S., Good, P., Chatterjee, S., Grange, T., Pictet, R., Kohn, D., Engelke, D. and Rossi, J.J. (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3, 75–88.PubMedGoogle Scholar
  9. Bertrand, E.L. and Rossi, J.J. (1994) Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear protein Al. EMBO J. 13, 2904–2912.PubMedGoogle Scholar
  10. Birikh, K.R., Berlin, Y.A., Soreq, H. and Eckstein, F. (1997) Probing accessible sites for ribozymes on human acetylcholinesterase RNA. RNA 3, 429–437.PubMedGoogle Scholar
  11. Cech, T.R. (1990) Self-splicing and enzymatic activity of an intervening sequence RNA from tetrahymena. Angew. Chem. Int. Ed. Engl. 29, 759–768.CrossRefGoogle Scholar
  12. Chen, C.J., Banerjea, A.C., Harmison, G.G., Haglund, K. and Schubert, M. (1992) Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication-potential effectiveness against most presently sequenced HIV-1 isolates. Nucleic Acids Res. 20, 4581–4589.PubMedCrossRefGoogle Scholar
  13. Czubayko, F., Downing, S.G., Hsieh, S.S., Goldstein, D.J., Lu, P.Y., Trapnell, B.C. and Wellstein, A. (1997) Adenovirus-mediated transduction of ribozymes abrogates HER-2/neu and pleiotrophin expression and inhbits tumor cell proliferation. Gene Ther. 4, 943–949.PubMedCrossRefGoogle Scholar
  14. Czubayko, F., Riegel, A.T. and Wellstein, A. (1994) Ribozyme-targeting elucidates a direct role of pleiotrophin in tumor growth. J. Biol. Chem. 269, 21358–21363.PubMedGoogle Scholar
  15. Czubayko, F., Schulte, A.M., Berchem, G.J. and Wellstein, A. (1996) Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc. Natl. Acad. Sci. USA 93, 14753–14758.PubMedCrossRefGoogle Scholar
  16. Dahm, S.C., Derrick, W.B. and Uhlenbeck, O.C. (1993) Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32, 13040–13045.PubMedCrossRefGoogle Scholar
  17. Dahm, S.C. and Uhlenbeck, O.C. (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469.PubMedCrossRefGoogle Scholar
  18. De Young, M.B., Kincade-Denker, J., Boehm, C.A., Riek, R.P., Mamone, J.A., McSwiggen, J.A. and Graham, R.M. (1994) Functional characterization of ribozymes expressed using Ul and T7 vectors for the intracellular cleavage of ANF mRNA. Biochemistry 33, 12127–12138.PubMedCrossRefGoogle Scholar
  19. Denman, R.B. (1993) Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15, 1090–1094.PubMedGoogle Scholar
  20. Dropulic, B., Lin, N.H., Martin, M. and Jeang, K.-T. (1992) Functional characterization of a U5 ribozyme: Intracellular suppression of human immunodeficiency virus type 1 expression. J. Virol. 66, 1432–1441.PubMedGoogle Scholar
  21. Efrat, S., Leiser, M., Wu, Y.-J., Fusco-DeMaine, D., Emran, O.A., Surana, M., Jetton, T.L., Magnuson, M.A., Weir, G. and Fleischer, N. (1994) Ribozyme-mediated attenuation of pancreatic β-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 91, 2051–2055.PubMedCrossRefGoogle Scholar
  22. Feigner, J.H., Kumar, R., Sridhar, C.N., Wheller, C.J., Tsai, Y.J., Border, R., Ramsey, P., Martin, M. and Felgner, P.L. (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.Google Scholar
  23. Feng, M., Cabrera, G., Deshane, J., Scanlon, K.J. and Curiel, D.T. (1995) Neoplastic reversion accomplished by highe efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res. 55, 2024-2–28.Google Scholar
  24. Fersht, A. (1985). Enzyme structure and mchanism. New York, W.H. Freeman.Google Scholar
  25. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  26. Fisher, K.J., Choi, H., Burda, J., Chen, S.J. and Wilson, J.M. (1996) Recombinant adenovirus deleted of all viral genes for gene therapy in cystic fibrosis. Virology 217, 11–22.PubMedCrossRefGoogle Scholar
  27. Flory, CM., Paveo, P.A., Jarvis, T.C., Lesch, M.E., Wincott, F.E., Beigelman, L., Hunt III, S.W. and Schrier, D.J. (1996) Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc. Natl. Acad. Sci. USA 93, 754–758.PubMedCrossRefGoogle Scholar
  28. Gait, M.J., Pritchard, C. and Slim, G. (1991). Oligoribonucleotide synthesis, in Oligonucleotides and analogues. Eckstein, F., Ed. Oxford, IRL press. 25–48.Google Scholar
  29. Gavin, D.K. and Gupta, K.C. (1997) Efficient hammerhead ribozymes targeted to the polycistronic sendai virus P/C mRNA. J. Biol. Chem. 272, 1461–1472.PubMedCrossRefGoogle Scholar
  30. Gervaix, A., Li, X., Kraus, G. and Wong-Staal, F. (1997) Multigene antiviral vectors inhibit divers human immunodeficiency virus type 1 clades. J. Virol. 71, 3048–3053.PubMedGoogle Scholar
  31. Gregoriadis, G. (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13527-537, 527–537.CrossRefGoogle Scholar
  32. Haseloff, J. and Gerlach, W.L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591.PubMedCrossRefGoogle Scholar
  33. Heidenreich, O., Benseier, F., Fahrenholz, A. and Eckstein, F. (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J. Biol. Chem. 269, 2131–2138.PubMedGoogle Scholar
  34. Heidenreich, O. and Eckstein, F. (1992) Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J. Biol. Chem. 267, 1904–1909.PubMedGoogle Scholar
  35. Heidenreich, O. and Eckstein, F. (1997). Synthetic ribozymes. in Concepts in Gene Therapy. Strauss, M. and Barranger, J., Ed. Berlin, Walter de Gruyter.Google Scholar
  36. Heidenreich, O., Kang, S.-H., Brown, D.A., Xu, X., Swiderski, P., Rossi, J.J., Eckstein, F. and Nerenberg, M. (1995a) Ribozyme-mediated RNA degradation in nuclei suspension. Nucleic Acids Res. 23, 2223–2228.PubMedCrossRefGoogle Scholar
  37. Heidenreich, O., Kang, S.-H., Xu, X. and Nerenberg, M. (1995b) Application of antisense technology to therapeutics. Mol. Medicine Today 1, 128–133.CrossRefGoogle Scholar
  38. Heidenreich, O., Xu, X. and Nerenberg, M. (1996) A hammerhead ribozyme cleaves its target RNA during RNA preparation. Antisense Nucleic Acids Drug Dev. 6, 141–144.Google Scholar
  39. Heidenreich, O., Xu, X., Swiderski, P., Rossi, J.J. and Nerenberg, M. (1996) Correlation of activity with stability of chemically modified ribozymes in nuclei suspension. Antisense Nucleic Acid Drug Dev. 6, 111–118.PubMedGoogle Scholar
  40. Heinrich, J.C., Tabler, M. and Louis, C. (1993) Attenuation of white gene expression in transgenic Drosophila melanogaster: possible role of a catalytic antisense RNA. Dev. Genetics 14, 258–265.CrossRefGoogle Scholar
  41. Herschlag, D. (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn’t always better. Proc. Natl. Acad. Sci. USA 88, 6921–6925.PubMedCrossRefGoogle Scholar
  42. Herschlag, D., Khosla, M., Tsuchihashi, Z. and Karpel, R.L. (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 13, 2913–2924.PubMedGoogle Scholar
  43. Hertel, K.J., Pardi, A., Uhlenbeck, O.C., Koizumi, M., Ohtsuka, E., Uesugi, S., Cedergren, R., Eckstein, F., Gerlach, W.L., Hodgson, R. and Symons, R.H. (1992) Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252.PubMedCrossRefGoogle Scholar
  44. Hildebrandt, M. and Nellen, W. (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: Implications on antisense-mediated regulation of mRNA stability. Cell 69, 197–204.PubMedCrossRefGoogle Scholar
  45. Hoffman, L.M. and Johnson, M.G. (1994) Enzymatic synthesis of milligram quantities of ribozymes in small volumes. Biotechniques 17, 372–375.PubMedGoogle Scholar
  46. Holm, P.S., Scanlon, K.J. and Dietel, M. (1994) Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme. Brit. J. Cancer 70, 239–243.PubMedGoogle Scholar
  47. Homann, M., Rittner, K. and Sczakiel, G. (1993a) Complementary large loops determine the rate of RNA duplex formation in vitro in the case of an effective antisense RNA directed against the human immunodeficieny virus type 1. J. Mol. Biol. 233, 7–15.PubMedCrossRefGoogle Scholar
  48. Homann, M., Tzortzakaki, S., Rittner, K., Sczakiel, G. and Tabler, M. (1993b) Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res. 21, 2809–2814.PubMedCrossRefGoogle Scholar
  49. Huang, S., Stupack, D., Mathias, P., Wang, Y. and Nemerow, G. (1997) Growth arrest of epstein-barr virus immortalized B lymphocytes by adenovirus-delivered ribozymes. Proc. Natl. Acad. Sci. USA 94, 8156–8161.PubMedCrossRefGoogle Scholar
  50. Jacobson, A. and Peltz, S.W. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Ann. Rev. Biochem. 65, 693–739.PubMedCrossRefGoogle Scholar
  51. Kashani-Sabet, M., Funato, T., Florenes, V.A., Fodstad, O. and Scanlon, K.J. (1994) Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res. 54, 900–902.PubMedGoogle Scholar
  52. Kawasaki, H., Eckner, R., Yao, T.-P., Taira, K., Chiu, R., Livingston, D.M. and Yokoyama, K.K. (1998) Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393, 284–289.PubMedCrossRefGoogle Scholar
  53. Kawasaki, H., Ohkawa, J., Tanishige, N., Yoshinari, K., Murata, T., Yokoyama, K.K. and Taira, K. (1996) Selection of the best target site for ribozyme-mediated cleavage within a fusion gene for adenovirus E1A-associated 300 kDa protein (p300) and luciferase. Nucleic Acids Res. 24, 3010–3016.PubMedCrossRefGoogle Scholar
  54. Kore, A.R., Vaish, N.K., Kutzke, U. and Eckstein, F. (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res. 26, 4116–4120.PubMedCrossRefGoogle Scholar
  55. Kronenwett, R., Haas, R. and Sczakiel, G. (1996) Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes. J. Mol. Biol. 259, 632–644.PubMedCrossRefGoogle Scholar
  56. L’Huillier, P., Soulier, S., Stinnakre, M.-G., Lepourry, L., Davis, S.R., Mercier, J.-C. and Vilotte, J.-L. (1996) Efficient and specific ribozyme-mediated reduction of bovine a-lactalbumin expression in double transgenic mice. Proc. Natl Acad. Sci. USA 93, 6698–6703.PubMedCrossRefGoogle Scholar
  57. L’Huillier, P.J., Davis, S.R. and Bellamy, A.R. (1992) Cytoplasmic delivery of ribozymes leads to efficient reduction in α-lactalbumin mRNA levels in C127I mouse cells. EMBO J. 11, 4411–4418.PubMedGoogle Scholar
  58. Lan, N., Howrey, R.P., Lee, S.-W., Smith, C.A. and Sullenger, B.A. (1998) Ribozyme-mediated repair of sickle b-globin mRNAs in erythrocyte precursors. Science 280, 1593–1596.PubMedCrossRefGoogle Scholar
  59. Lange, W., Cantin, E.M., Finke, J. and Dölken, G. (1993) In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia 7, 1786–1794.PubMedGoogle Scholar
  60. Lange, W., Daskalatis, M., Finke, J. and Dölken, G. (1994) Comparison of different ribozymes for efficient and specific cleavage of BCR/ABL related mRNAs. FEBS Lett. 338, 175–178.PubMedCrossRefGoogle Scholar
  61. Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementary to lin-14. Cell 75, 843–854.PubMedCrossRefGoogle Scholar
  62. Leopold, L.H., Shore, S.K., Newkirk, T.A., Reddy, R.M.V. and Reddy, E.P. (1995) Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 85, 2162.PubMedGoogle Scholar
  63. Lewin, A.S., Drenser, K.A., Hauswirth, W.W., Nishikawa, S., Yasumura, D., Flannery, J.G. and LaVail, M.M. (1998) Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nature Med. 4, 967–971.PubMedCrossRefGoogle Scholar
  64. Lewis, J.G., Lin, K.J., Kothavale, A., Flanagan, W.M., Matteucci, M.D., DePrince, R.B., Mook, R.A., Hendren, R.W. and Wagner, R.W. (1996) A serum-resistent cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93, 3176–3181.PubMedCrossRefGoogle Scholar
  65. Lieber, A. and Kay, M.A. (1996) Adenovirus-mediated expression of ribozymes in mice. J. Virol. 70, 3153–3158.PubMedGoogle Scholar
  66. Liu, Z., Batt, D.B. and Carmichael, G.G. (1994) Targeted nuclear antisense RNA mimics natural antisense-induced degradation of polyoma virus early RNA. Proc. Natl. Acad. Sci. USA 91, 4258–4262.PubMedCrossRefGoogle Scholar
  67. Ludwig, J., Blaschke, M. and Sproat, B.S. (1998) Extending the cleavage rules for the hammerhead ribozyme:mutating adenosine15.1 to inosine15.1 change the cleavage site specificity from N16.2U16.1H17 to N16.2C16.1H17 Nucleic Acids Res. 26, 2279–2285.PubMedCrossRefGoogle Scholar
  68. Luzi, E., Eckstein, F. and Barsacchi, G. (1997) The newt ribozyme is part of a riboprotein complex. Proc. Natl. Acad. Sci. USA 94, 9711–9716.PubMedCrossRefGoogle Scholar
  69. Lyngstadaas, S.P., Risnes, S., Sproat, B.S., Thrane, P.S. and Prydz, H.P. (1995) A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J. 14, 5224–5229.PubMedGoogle Scholar
  70. Malmgren, C., Wagner, E.G.H., Ehresmann, C., Ehresmann, B. and Romby, P. (1997) Antisense RNA control of plasmid R1 replication. J. Biol. Chem. 272, 12508–12512.PubMedCrossRefGoogle Scholar
  71. Marschall, P., Thomson, J.B. and Eckstein, F. (1994) Inhibition of gene expression with ribozymes. Cell. Mol. Neurobiol. 14, 523–538.PubMedCrossRefGoogle Scholar
  72. Matsushita, H., Kizaki, M., Kobayashi, H., Ueno, H., Muto, A., Takayama, N., Awaya, N., Kinjo, K., Hattori, Y. and Ikeda, Y. (1998) Restoration of retinoid sensitivity by MDR1 ribozymes in retinoic acid-resistant myeloid leukemic cells. Blood 91, 2452–2458.PubMedGoogle Scholar
  73. Michienzi, A., Prislei, S. and Bozzoni, I. (1996) U1 small nuclear RNA chimeric ribozymes with substrate specificity for the Rev pre-mRNA of human immunodeficiency virus. Proc. Natl. Acad. Sci. 93, 7219–7224.PubMedCrossRefGoogle Scholar
  74. Miller, A.D. (1992) Human gene therapy comes of age. Nature 357, 455–460.PubMedCrossRefGoogle Scholar
  75. Monia, B.P., Lesnik, E.A., Gonzalez, C., Lima, W.F., McGee, D., Guinosso, C.J., Kawasaki, A.M., Cook, P.D. and Freier, S.M. (1993) Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522.PubMedGoogle Scholar
  76. Morgan, R.A. and Anderson, W.F. (1993) Human gene therapy. Ann. Rev. Biochem. 62, 191–217.PubMedCrossRefGoogle Scholar
  77. Mulligan, R.C. (1993) The basic science of gene therapy. Science 260, 926–932.PubMedCrossRefGoogle Scholar
  78. Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. and Scott, W.G. (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595.PubMedCrossRefGoogle Scholar
  79. Nason-Burchenal, K., Allopenna, J., Begue, A., Stehelin, D., Dmitrovsky, E. and Martin, P. (1998a) Targeting of PML/RARa is lethal to retinoic acid-resistant promyelocytic leukemia cells. Blood 92, 1758–1767.PubMedGoogle Scholar
  80. Nason-Burchenal, K., Takle, G., Pace, U., Flynn, S., Allopenna, J., Martin, P., George, S.T., Goldberg, A.R. and Dmitrovsky, E. (1998b) Targeting the PML/RARα translocation product triggers apoptosis in promyelocytic leuemia cells. Oncogene 17, 1759–1768.PubMedCrossRefGoogle Scholar
  81. Nedbal, W., Frey, M., Willemann, B., Zentgraf, H. and Sczakiel, G. (1997) Mechanistic insights into p53-promoted RNA-RNA annealing. J. Mol. Biol. 266, 677–687.PubMedCrossRefGoogle Scholar
  82. Nellen, W. and Sczakiel, G. (1996) In vitro and in vivo action of antisense RNA. Mol. Biotechnol. 6, 7–15.PubMedGoogle Scholar
  83. Ojwang, J.O., Hampel, A., Looney, D.J., Wong-Staal, F. and Rappaport, J. (1992) Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc. Natl. Acad. Sci. USA 89, 10802–10806.PubMedCrossRefGoogle Scholar
  84. Pace, U., Bockmann, J.M., MacKay, B.J., Miller, J., W.H., Dmitrovsky, E. and Goldberg, A.R. (1994) A ribozyme which discriminates in vitro between PML/RARα, the t(15;17)-associated fusion RNA of acute promyelocytic leukemia, and PML and RARa, the transcripts from the nonrearranged alleles. Cancer Res. 54, 6365–6369.PubMedGoogle Scholar
  85. Pal, B.K., Scherer, L., Zelby, L., Bertrand, E. and Rossi, J.J. (1998) Monitoring retroviral RNA dimerization in vivo via hammerhead ribozyme cleavage. J. Virol. 72, 8349–8355.PubMedGoogle Scholar
  86. Patzel, V. and Sczakiel, G. (1998) Theoretical design of antisense RNA structures substantially improves annealing kinetics and efficacy in human cells. Nat. Biotech. 16, 64–68.CrossRefGoogle Scholar
  87. Persson, C., Wagner, E.G.H. and Nordström, K. (1988) Control of replication of plasmid R1: Kinetics of in vitro interaction between the antisense RNA, CopA, and its target, CopT. EMBO J. 7, 3279–3288.PubMedGoogle Scholar
  88. Pley, H.W., Flaherty, K.M. and McKay, D.B. (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74.PubMedCrossRefGoogle Scholar
  89. Pörschke, D. and Eigen, M. (1971) Cooperative non-enzymatic base recognition. J. Mol. Biol. 62, 361–381.PubMedCrossRefGoogle Scholar
  90. Rittner, K., Burmester, C. and Sczakiel, G. (1993) In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1. Nucleic Acids Res. 21, 1381–1387.PubMedCrossRefGoogle Scholar
  91. Romani, A. and Scarpa, A. (1992) Regulation of cell magnesium. Arch. Biochem. Biophys. 298, 1–12.PubMedCrossRefGoogle Scholar
  92. Rosenzweig, M., Marks, D.F., Hempel, D., Heusch, M., Kraus, G., Wong-Staal, F. and Johnson, R.P. (1998) Intracellular immunization of rhesus CD34+ hematopoietic progenitor cells with a hairpin ribozyme protects T cells and macrophages from simian immunodeficiency virus infection. Blood 90, 4822–4831.Google Scholar
  93. Sakamoto, N., Wu, C.H. and Wu, G.Y. (1996) Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J. Clin. Invest. 98, 2720–2728.PubMedGoogle Scholar
  94. Salmons, B. and Günzburg, W.H. (1997). Retroviral vectors. in Concepts in gene therapy. Strauss, M. and Barranger, J. A., Ed. Berlin, Walter de Gruyter. 3–24.Google Scholar
  95. Sargueil, B., Pecchia, D.B. and Burke, J.M. (1995) An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry 34, 7739–7748.PubMedCrossRefGoogle Scholar
  96. Sarver, N., Cantin, E.M., Chang, P.S., Zaia, J.A., Ladne, P.A., Stephens, D.A. and Rossi, J.J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225.PubMedCrossRefGoogle Scholar
  97. Scanlon, K.J., Ishida, H. and Kashani-Sabet, M. (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc. Natl. Acad. Sci. USA 91, 11123–11127.PubMedCrossRefGoogle Scholar
  98. Scherr, M., Grez, M., Ganser, A. and Engels, J.W. (1997) Specific hammerhead ribozyme-mediated cleavage of mutant N-ras mRNA in vitro and ex vivo. J. Biol. Chem. 272, 14304–14313.PubMedCrossRefGoogle Scholar
  99. Scherr, M., Maurer, A.B., Klein, S., Ganser, A., Engels, J.W. and Grez, M. (1998) Effecive reversal of a transformed phenotype by retrovirus-mediated transfer of a ribozyme directed againt mutant N-ras. Gene Ther. 5, 1227–1234.PubMedCrossRefGoogle Scholar
  100. Scherr, M. and Rossi, J.J. (1998) Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res. 26, 5079–5085.PubMedCrossRefGoogle Scholar
  101. Schmelzer, C. and Schweyen, R.J. (1986) Self-splicing of group II introns in vitro: mapping ofthe branch point and mutational inhitibition of lariat formation. Cell 46, 557–565.PubMedCrossRefGoogle Scholar
  102. Scott, W.G., Finch, J.T. and Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002.PubMedCrossRefGoogle Scholar
  103. Sczakiel, G. (1994) Antisense strategies for the control of aberrant gene expression. J. Hematother. 3, 305–313.PubMedGoogle Scholar
  104. Sczakiel, G. and Goody, R.S. (1994) Antisense principle or ribozyme action? Biol. Chem. Hoppe-Seyler 375, 745–746.PubMedGoogle Scholar
  105. Shimayama, T., Nishikawa, S. and Taira, K. (1995) Generality of the NUX rule: Kinetic analysis of the results of systematic mutations in tthe trinucleotide at the cleavage site of the hammerhead ribozyme. Biochemistry 34, 3649–3654.PubMedCrossRefGoogle Scholar
  106. Sioud, M. (1994) Interaction between tumour necrosis factor α ribozyme and cellular proteins. J. Mol. Biol. 242, 619–629.PubMedCrossRefGoogle Scholar
  107. Sioud, M. and Jespersen, L. (1996) Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J. Mol. Biol. 257, 775–789.PubMedCrossRefGoogle Scholar
  108. Sioud, M., Natvig, J.B. and Førre, Ø. (1992) Preformed ribozyme destroys tumour necrosis factor mRNA in human cells. J. Mol. Biol. 223, 831–835.PubMedCrossRefGoogle Scholar
  109. Sioud, M. and Sørensen, D.R. (1998) A nuclease-resistant protein kinase Ca ribozyme blocks glioma cell growth. Nat. Biotech. 16, 556–561.CrossRefGoogle Scholar
  110. Slim, G. and Gait, M.J. (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 19, 1183–1188.PubMedCrossRefGoogle Scholar
  111. Snyder, D.S., Wu, Y., Wang, J.L., Rossi, J.J., Swiderski, P., Kaplan, B.E. and Forman, S.J. (1993) Ribozyme-mediated Inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 82, 600–605.PubMedGoogle Scholar
  112. Stein, C.A. and Cheng, Y.-C. (1993) Antisense oligonucleotides as therapeutic agents-Is the bullet really magical? Science 261, 1004–1012.PubMedCrossRefGoogle Scholar
  113. Steinbach, O.C., Wolffe, A.P. and Rupp, R.A.W. (1997) Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389, 395–399.PubMedCrossRefGoogle Scholar
  114. Sullenger, B.A. and Cech, T.R. (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566–1569.PubMedCrossRefGoogle Scholar
  115. Sun, L.-Q., Warrilow, D., Wang, L., Witherington, C., MacPherson, J. and Symonds, G. (1994) Ribozyme-mediated suppression of moloney murine leukemia virus and human immunodeficiency virus type I replication in permissive cell lines. Proc. Natl Acad. Sci. USA 91, 9715–9719.PubMedCrossRefGoogle Scholar
  116. Sun, L.Q., Pyati, J., Smythe, J., Wang, L., MacPherson, J., Gerlach, W. and Symonds, G. (1995a) Resistance to human immunodeficiency virus type 1 infeciton conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc. Natl. Acad. Sci. USA 92, 7272–7276.PubMedCrossRefGoogle Scholar
  117. Sun, L.Q., Wang, L., Gerlach, W.L. and Symonds, G. (1995b) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res. 23, 2909–2913.PubMedCrossRefGoogle Scholar
  118. Sutterluety, H., Bartl, S., Doetzlhofer, A., Khier, H., Wintersberger, E. and Seiser, C. (1998) Growth-regulated antisense transcription of the mouse thymidine kinase gene. Nucleic Acids Res. 26, 4989–4995.PubMedCrossRefGoogle Scholar
  119. Symons, R.H. (1992) Small catalytic RNAs. Annu. Rev. Biochem. 61, 641–671.PubMedCrossRefGoogle Scholar
  120. Tsuchihashi, Z., Khosla, M. and Herschlag, D. (1993) Protein enhancement of hammerhead ribozyme catalysis. Science 262, 99–102.PubMedCrossRefGoogle Scholar
  121. Tuschl, T. and Eckstein, F. (1993) Hammerhead ribozymes: importance o stem-loop II for activity. Proc. Natl. Acad. Sci. USA 90, 6991–6994.PubMedCrossRefGoogle Scholar
  122. Tuschl, T., Gohlke, C., Jovin, T.M., Westhof, E. and Eckstein, F. (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266, 785–789.PubMedCrossRefGoogle Scholar
  123. Tuschl, T., Thomson, J.B. and Eckstein, F. (1995) RNA cleavage by small catalytic RNAs. Curr. Opin. Struct. Biol. 5, 296–302.PubMedCrossRefGoogle Scholar
  124. Vaish, N.K., Heaton, P.A., Fedorova, O. and Eckstein, F. (1998) In vitro selection of a purine nucleotide-specific hammerhead-like ribozyme. Proc. Natl. Acad. Sci. USA 95, 2158–2162.PubMedCrossRefGoogle Scholar
  125. van Tol, H., Buzayan, J.M., Feldstein, P.A., Eckstein, F. and Bruening, G. (1990) Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 18, 1971–1975.PubMedCrossRefGoogle Scholar
  126. Wagner, E.G.H. and Simons, R.W. (1994) Antisense RNA control in bacteria, phages, and plasmids. Ann. Rev. Microbiol. 48 Google Scholar
  127. Werner, M. and Uhlenbeck, O.C. (1995) The effect of base mismatches in the substrate recognition helices of hammerhead ribozymes on binding and catalysis. Nucleic Acids Res. 23, 2092–2096.PubMedCrossRefGoogle Scholar
  128. Westaway, S.K., Cagnon, L., Chang, Z., Li, S., Li, H., Larson, G.P., Zaia, J.A. and Rossi, J.J. (1998) Virion encapsidation of tRNA3Lys-ribozyme chimeric RNAs inhibits HIV infection. Antisense Nucleic Acid Drug Dev. 8, 185–197.PubMedGoogle Scholar
  129. Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.PubMedCrossRefGoogle Scholar
  130. Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S. and Usman, N. (1995) Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684.PubMedCrossRefGoogle Scholar
  131. Wong-Staal, F., Poeschla, E.M. and Looney, D.J. (1998) A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphoctes transduced with a ribozyme that cleaves HIV-1 RNA. Hum. Gene Ther. 9, 2407–2425.PubMedCrossRefGoogle Scholar
  132. Xie, Y., Chen, X. and Wagner, T.E. (1997) A ribozyme-mediated, gene “knockdown” strategy for the identification of gene function in zebrafish. Proc. Natl. Acad. Sci. USA 94, 13777–13781.PubMedCrossRefGoogle Scholar
  133. Xing, Z. and Whitton, J.L. (1993) An anti-lymphocytic choriomeningitis virus ribozyme expressed in tissue culture cells diminishes viral RNA levels and leads to a reduction in infectious virus yield. J. Virol. 67, 1840–1847.PubMedGoogle Scholar
  134. Yamada, O., Kraus, G., Leavitt, M.C., Yu, M. and Wong-Staal, F. (1994) Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T-cells. Virology 205, 121–126.PubMedCrossRefGoogle Scholar
  135. Yamada, O., Kraus, G., Luznik, L., Yu, M. and Wong-Staal, F. (1996) A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. Virol. 70, 1596–1601.Google Scholar
  136. Young, K.J., Gill, F. and Grasby, J.A. (1997) Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 25, 3760–3766.PubMedCrossRefGoogle Scholar
  137. Yu, M., Leavitt, M.C., Maruyama, M., Yamada, O., Young, D., Ho, A.D. and Wong-Staal, F. (1995) Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92, 699–703.PubMedCrossRefGoogle Scholar
  138. Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D. and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 90, 6340–6344.PubMedCrossRefGoogle Scholar
  139. Yu, Q., Pecchia, D.B., Kingsley, S.L., Heckman, J.E. and Burke, J.M. (1998) Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. J. Biol. Chem. 273, 23524–23533.PubMedCrossRefGoogle Scholar
  140. Yuan, Y., Hwang, E.-S. and Airman, S. (1992) Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA 89, 8006–8010.PubMedCrossRefGoogle Scholar
  141. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A. and Welsh, M.J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18997–19007.PubMedCrossRefGoogle Scholar
  142. Zhao, J.J. and Lemke, G. (1998) Selective disruption of neuregulin-1 function in vertebrate embryos using ribozyme-tRNA transgenes. Development 125, 1899–1907.PubMedGoogle Scholar
  143. Zhao, J.J. and Pick, L. (1993) Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365, 448–451.PubMedCrossRefGoogle Scholar
  144. Zhou, C., Banner, I.C., Larson, G.P., Zaia, J.A., Rossi, J.J. and Kohn, D.B. (1994) Inhibition of HIV-1 in human T-Lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene 149, 33–39.PubMedCrossRefGoogle Scholar
  145. Zoumadakis, M., Neubert, W.J. and Tabler, M. (1994) The influence of imperfectly paired helices I and III on the catalytic of hammerhead ribozymes. Nucleic Acids Res. 22, 5271–5278.PubMedCrossRefGoogle Scholar
  146. Zoumadakis, M. and Tabler, M. (1995) Comparative analysis of cleavage rates after systematic permutation of the NUX consensus target motif for hammerhead ribozymes. Nucleic Acids Res. 23, 1192–1196.PubMedCrossRefGoogle Scholar
  147. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Department of Molecular Biology, Institute for Cell BiologyEberhard-Karls-Universität TübingenTübingenGermany

Personalised recommendations